首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A combination of ring opening metathesis polymerization (ROMP) and click chemistry approach is first time utilized in the preparation of 3‐miktoarm star terpolymer. The bromide end‐functionality of monotelechelic poly(N‐butyl oxanorbornene imide) (PNBONI‐Br) is first transformed to azide and then reacted with polystyrene‐b‐poly(methyl methacrylate) copolymer with alkyne at the junction point (PS‐b‐PMMA‐alkyne) via click chemistry strategy, producing PS‐PMMA‐PNBONI 3‐miktoarm star terpolymer. PNBONI‐Br was prepared by ROMP of N‐butyl oxanorbornene imide (NBONI) 1 in the presence of (Z)‐but‐2‐ene‐1,4‐diyl bis(2‐bromopropanoate) 2 as terminating agent. PS‐b‐PMMA‐alkyne copolymer was prepared successively via nitroxide‐mediated radical polymerization (NMP) of St and atom transfer radical polymerization (ATRP) of MMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 497–504, 2009  相似文献   

2.
The preparation of 3‐miktoarm star terpolymers using nitroxide mediated radical polymerization (NMP), ring opening polymerization (ROP), and click reaction [3 + 2] are carried out by applying two types of one‐pot technique. In the first one‐pot technique, NMP of styrene (St), ROP of ε‐caprolactone (ε‐CL), and [3 + 2] click reaction (between azide end‐functionalized poly(ethylene glycol) (PEG‐N3)/or azide end‐functionalized poly(methyl methacrylate) (PMMA‐N3) and alkyne) are carried out in the presence of 2‐(hydroxymethyl)‐2‐methyl‐3‐oxo‐3‐(2‐phenyl‐2‐(2,2,6,6‐tetramethylpiperidin‐1‐yloxy)ethoxy) propyl pent‐4‐ynoate, 2 , as an initiator for 48 h at 125 °C (one‐pot/one‐step). As a second technique, NMP of St and ROP of ε‐CL were conducted using 2 as an initiator for 20 h at 125 °C, and subsequently PEG‐N3 or azide end‐functionalized poly(tert‐butyl acrylate (PtBA‐N3) was added to the polymerization mixture, followed by a click reaction [3 + 2] for 24 h at room temperature (one‐pot/two‐step). The 3‐miktoarm star terpolymers, PEG‐poly(ε‐caprolactone)(PCL)‐PS, PtBA‐PCL‐PS and PMMA‐PCL‐PS, were recovered by a simple precipitation in methanol without further purification. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3588–3598, 2007  相似文献   

3.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

4.
A facile synthetic pathway to miktoarm star copolymers with multiple arms has been developed by combining reversible addition–fragmentation chain transfer (RAFT) arm‐first technique and aldehyde–aminooxy “click” coupling reaction. Star polystyrene (PS) with aldehyde functionalized core was initially prepared by RAFT arm‐first technique via crosslinking of the preformed linear macro‐RAFT agents using a newly designed aldehyde‐containing divinyl compound 6,6′‐(ethane‐1,2‐diylbis(oxy))bis(3‐vinylbenzaldehyde) (EVBA). It was then used as a multifunctional coupling agent for the subsequent formation of the second generation poly(ethylene glycol) (PEG) arms via the click coupling reaction between its aldehyde groups and aminooxy‐terminated PEGs. The possible formation of PS‐PEG miktoarm star copolymer with Janus‐like segregated structure in cyclohexanone was also investigated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3323–3330, 2010  相似文献   

5.
An ABC type miktoarm star copolymer possessing polystyrene (PS), poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) arms was synthesized by combining Atom Transfer Radical Polymerization (ATRP) and Ring Opening Polymerization (ROP) with two click chemistries, namely thiol–ene and copper catalyzed azide–alkyne cycloaddition (CuAAC). For this purpose, a core 1-(allyloxy)-3-azidopropan-2-ol with allyl and azide functionalities was synthesized in two steps. Then, clickable polymers, polystyrene with thiol functionality (PS–SH) and poly(ethylene glycol) with alkyne functionality (PEG–acetylene) were independently prepared. As the first step of the grafting onto process, PS–SH was thiol–ene clicked onto the core to yield PS–N3–OH. The second arm was then incorporated onto the core by the Ring Opening Polymerization (ROP) of l-(?)-Lactide (LA) using as PS–N3–OH initiator and tin(II) 2-ethylhexanoate as catalyst. Finally, alkyne–PEG–acetylene was bonded to the resulting PLA–PS–N3 using CuAAC click reaction. All intermediates, related polymers at different stages and final PS–PLA–PEG miktoarm star copolymer were characterized by 1H NMR, FT-IR, SEC and DP-MS analyses. Direct pyrolysis mass spectrometry, (DP-MS) analyses of PS–PLA–PEG and all intermediate polymers indicated that the decomposition of PS and PEG chains occurred almost independently, following the degradation mechanisms of the corresponding homopolymers. On the other hand, during the pyrolysis of PS–PLA–PEG, elimination of H2O during the decomposition of PEG chains at the early stages of pyrolysis caused hydrolysis of PLA chains and increased the yields of CO2, CO and units involving unsaturation and/or crosslinked structure.  相似文献   

6.
Two samples of dendrimer‐like miktoarm star terpolymers: (poly(tert‐butyl acrylate))3‐(polystyrene‐poly(ε‐caprolactone))3 (PtBA)3‐(PS‐PCL)3, and (PS)3‐(PtBA‐poly(ethylene glycol)3 were prepared using efficient Cu catalyzed Huisgen cycloaddition (click reaction). As a first step, azido‐terminated 3‐arm star polymers PtBA and PS as core (A) were synthesized by atom transfer radical polymerization (ATRP) of tBA and St, respectively, followed by the conversion of bromide end group to azide. Secondly, PS‐PCL and PtBA‐PEG block copolymers with alkyne group at the junction as peripheral arms (B‐C) were obtained via multiple living polymerization mechanisms such as nitroxide mediated radical polymerization (NMP) of St, ring opening polymerization (ROP) of ε‐CL, ATRP of tBA. Thus obtained core and peripheral arms were linked via click reaction to give target (A)3‐(B‐C)3 dendrimer‐like miktoarm star terpolymers. (PtBA)3‐(PS‐PCL)3 and (PS)3‐(PEG‐PtBA)3 have been characterized by GPC, DSC, AFM, and SAXS measurements. (PtBA)3‐(PS‐PCL)3 did not show any self‐organization with annealing due to the miscibility of the peripheral arm segments. In contrast, the micro‐phase separation of the peripheral arm segments in (PS)3‐(PtBA‐PEG)3 resulted in self‐organized phase‐separated morphology with a long period of ~ 13 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5916–5928, 2008  相似文献   

7.
Two samples of ABCD 4‐miktoarm star quarterpolymer with A = polystyrene (PS), B = poly(ε‐caprolactone) (PCL), C = poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA), and D = poly(ethylene glycol) (PEG) were prepared using click reaction strategy (Cu(I)‐catalyzed Huisgen [3 + 2] reaction). Thus, first, predefined block copolymers of different polymerization routes, PS‐b‐PCL with azide and PMMA‐b‐PEG and PtBA‐b‐PEG copolymers with alkyne functionality, were synthesized and then these blocks were combined together in the presence of Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst in DMF at room temperature to give the target 4‐miktoarm star quarterpolymers. The obtained miktoarm star quarter polymers were characterized by GPC, NMR, and DSC measurements. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1218–1228, 2008  相似文献   

8.
Well‐defined linear furan‐protected maleimide‐terminated poly(ethylene glycol) (PEG‐MI), tetramethylpiperidine‐1‐oxyl‐terminated poly(ε‐caprolactone) (PCL‐TEMPO), and azide‐terminated polystyrene (PS‐N3) or ‐poly(N‐butyl oxanorbornene imide) (PONB‐N3) were ligated to an orthogonally functionalized core ( 1 ) in a two‐step reaction mode through triple click reactions. In a first step, Diels–Alder click reaction of PEG‐MI with 1 was performed in toluene at 110 °C for 24 h to afford α‐alkyne‐α‐bromide‐terminated PEG (PEG‐alkyne/Br). As a second step, this precursor was subsequently ligated with the PCL‐TEMPO and PS‐N3 or PONB‐N3 in N,N‐dimethylformamide at room temperature for 12 h catalyzed by Cu(0)/Cu(I) through copper‐catalyzed azide‐alkyne cycloaddition and nitroxide radical coupling click reactions, yield resulting ABC miktoarm star polymers in a one‐pot mode. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
A novel six‐arm star block copolymer comprising polystyrene (PS) linked to the center and π‐conjugated poly (3‐hexylthiophene) (P3HT) was successfully synthesized using a combination of atom transfer radical polymerization (ATRP) and click reaction. First, star‐shaped PS with six arms was prepared via ATRP of styrene with the discotic six‐functional initiator, 2,3,6,7,10,11‐hexakis(2‐bromoisobutyryloxy)triphenylene. Next, the terminal bromides of the star‐shaped PS were substituted with azide groups. Afterward, the six‐arm star block copolymer PS‐b‐P3HT was prepared using the click coupling reaction of azide‐terminated star‐shaped PS with alkynyl‐terminated P3HT. Various techniques including 1H NMR, Fourier‐transform infrared and size‐exclusion chromatography were applied to characterize the chemical structures of the intermediates and the target block copolymers. Their thermal behaviors and optical properties were investigated using differential scanning calorimetry and UV–vis spectroscopy. Moreover, atomic force microscopy (AFM) was utilized to observe the morphology of the star block copolymer films. In comparison with two linear diblock copolymer counterparts, AFM results reveal the effect of the star block copolymer architecture on the microphase separation‐induced morphology in thin films. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
This article describes a divergent strategy to prepare dendrimer‐like macromolecules from vinyl monomers through a combination of atom transfer radical polymerization (ATRP) and click reaction. Firstly, star‐shaped polystyrene (PS) with three arms was prepared through ATRP of styrene starting from a three‐arm initiator. Next, the terminal bromides of the star‐shaped PS were substituted with azido groups. Afterwards, the azido‐terminated star‐shaped PS was reacted with propargyl 2,2‐bis((2′‐bromo‐2′‐methylpropanoyloxy)methyl)propionate (PBMP) via click reaction. Star‐shaped PS with six terminal bromide groups was afforded and served as the initiator for the polymerization of styrene to afford the second‐generation dendrimer‐like PS. Iterative process of the aforementioned sequence of reactions could allow the preparation of the third‐generation dendrimer‐like PS. When the second‐generation dendrimer‐like PS with 12 bromide groups used as an initiator for the polymerization of tert‐butyl acrylate, the third‐generation dendrimer‐like block copolymer with a PS core and a poly (tert‐butyl acrylate) (PtBA) corona was afforded. Subsequently PtBA segments were selectively hydrolyzed with hydrochloric acid, resulting an amphiphilic branched copolymer with inner dendritic PS and outer linear poly(acrylic acid) (PAA). Following the same polymerization procedures, the dendrimer‐like PS and PS‐block‐PtBA copolymers of second generation originating from six‐arm initiator were also synthesized. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3330–3341, 2007  相似文献   

11.
The ABCD 4‐miktoarm star polymers based on polystyrene (PS), poly(ε‐caprolactone) (PCL), poly(methyl acrylate) (PMA), and poly(ethylene oxide) (PEO) were synthesized and characterized successfully. Using the mechanism transformation strategy, PS with three different functional groups (i.e., hydroxyl, alkyne, and trithiocarbonate), PS‐HEPPA‐SC(S)SC12H25, was synthesized by the reaction of the trithiocarbonate‐terminated PS with 2‐hydroxyethyl‐3‐(4‐(prop‐2‐ynyloxy)phenyl) acrylate (HEPPA) in tetrahydrofuran (THF) solution. Subsequently, the ring‐opening polymerization (ROP) of ε‐caprolactone (CL) was carried out in the presence of stannous(II) 2‐ethylhexanoate and PS‐HEPPA‐SC(S)SC12H25, and then the PS‐HEPPA(PCL)‐SC(S)SC12H25 obtained was used in reversible addition‐fragmentation chain transfer (RAFT) polymerization of methyl acrylate (MA) to produce the ABC 3‐miktoarm star polymer, S(PS)(PCL)(PMA) carrying an alkyne group. The ABCD 4‐miktoarm star polymer, S(PS)(PCL)(PMA)(PEO) was successfully prepared by click reaction of the alkyne group on the HEPPA unit with azide‐terminated PEO (PEO‐N3). The target polymer and intermediates were characterized by NMR, FTIR, GPC, and DSC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6641–6653, 2008  相似文献   

12.
Synthesis of cysteine‐terminated linear polystyrene (PS)‐b‐poly(ε‐caprolactone) (PCL)‐b‐poly(methyl methacrylate) (PMMA)/or poly(tert‐butyl acrylate)(PtBA)‐b‐poly(ethylene glycol) (PEG) copolymers was carried out using sequential quadruple click reactions including thiol‐ene, copper‐catalyzed azide–alkyne cycloaddition (CuAAC), Diels–Alder, and nitroxide radical coupling (NRC) reactions. N‐acetyl‐L ‐cysteine methyl ester was first clicked with α‐allyl‐ω‐azide‐terminated PS via thiol‐ene reaction to create α‐cysteine‐ω‐azide‐terminated PS. Subsequent CuAAC reaction with PCL, followed by the introduction of the PMMA/or PtBA and PEG blocks via Diels–Alder and NRC, respectively, yielded final cysteine‐terminated multiblock copolymers. By 1H NMR spectroscopy, the DPns of the blocks in the final multiblock copolymers were found to be close to those of the related polymer precursors, indicating that highly efficient click reactions occurred for polymer–polymer coupling. Successful quadruple click reactions were also confirmed by gel permeation chromatography. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A new approach was developed for synthesis of certain A3B3‐type of double hydrophilic or amphiphilic miktoarm star polymers using a combination of “grafting onto” and “grafting from” methods. To achieve the synthesis of desired miktoarm star polymers, acetyl protected poly(ethylene glycol) (PEG) thiols (Mn = 550 and 2000 g mol?1) were utilized to generate A3‐type of homoarm star polymers through an in situ protective group removal and a subsequent thiol–epoxy “click” reaction with a tris‐epoxide core viz. 1,1,1‐tris(4‐hydroxyphenyl)ethane triglycidyl ether. The secondary hydroxyl groups generated adjacent to the core upon the thiol–epoxy reaction were esterified with α‐bromoisobutyryl bromide to install atom transfer radical polymerization (ATRP) initiating sites. ATRP of N‐isopropylacrylamide (NIPAM) using the three‐arm star PEG polymer fitted with ATRP initiating sites adjacent to the core afforded A3B3‐type of double hydrophilic (PEG)3[poly(N‐isopropylacrylamide)] (PNIPAM)3 miktoarm star polymers. Furthermore, the generated hydroxyl groups were directly used as initiator for ring‐opening polymerization of ε‐caprolactone to prepare A3B3‐type of amphiphilic (PEG)3[poly(ε‐caprolactone)]3 miktoarm star polymers. The double hydrophilic (PEG)3(PNIPAM)3 miktoarm star polymers showed lower critical solution temperature around 34 °C. The preliminary transmission electron microscopy analysis indicated formation of self‐assembly of (PEG)3(PNIPAM)3 miktoarm star polymer in aqueous solution. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 146–156  相似文献   

14.
Well‐defined AB3‐type miktoarm star‐shaped polymers with cholic acid (CA) core were fabricated with a combination of “click” chemistry and ring opening polymerization (ROP) methods. Firstly, azide end‐functional poly(ethylene glycol) (mPEG), poly(methyl methacrylate) (PMMA), polystyrene (PS), and poly(ε‐caprolactone) (PCL) polymers were prepared via controlled polymerization and chemical modification methods. Then, CA moieties containing three OH groups were introduced to these polymers as the end groups via Cu(I)‐catalyzed click reaction between azide end‐functional groups of the polymers ( mPEG‐N3 , PMMA‐N3 , PS‐N3 , and PCL‐N3 ) and ethynyl‐functional CA under ambient conditions, yielding CA end‐functional polymers ( mPEG‐Cholic , PMMA‐Cholic , PS‐Cholic , and PCL‐Cholic ). Finally, the obtained CA end‐capped polymers were employed as the macroinitiators in the ROP of ε‐caprolactone (ε‐CL) yielding AB3‐type miktoarm star polymers ( mPEG‐Cholic‐PCL3 , PMMA‐Cholic‐PCL3 , and PS‐Cholic‐PCL3 ) and asymmetric star polymer [ Cholic‐(PCL)4 ]. The chemical structures of the obtained intermediates and polymers were confirmed via Fourier transform infrared and 1H nuclear magnetic resonance spectroscopic techniques. Thermal decomposition behaviors and phase transitions were studied in detail using thermogravimetric analysis and differential scanning calorimetry experiments. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3390–3399  相似文献   

15.
Amphiphilic ABC miktoarm star terpolymers consisting of polystyrene, poly(ε‐caprolactone), and poly(N‐isopropylacrylamide) arms, PS(‐b‐PNIPAM)‐b‐PCL, were synthesized via a combination of atom transfer radical polymerization, ring‐opening polymerization (ROP), and click chemistry. Difunctional PS bearing an alkynyl and a primary hydroxyl moiety at the chain end, PS‐alknylOH, was prepared by reacting azido‐terminated PS with an excess of 3,5‐bis(propargyloxy)benzyl alcohol (BPBA) under click conditions. The subsequent ROP of ε‐caprolactone using PS‐alknylOH macroinitiator afforded PS(‐alkynyl)‐b‐PCL copolymer bearing an alkynyl moiety at the diblock junction point. Target PS(‐b‐PNIPAM)‐b‐PCL amphiphilic ABC miktoarm star terpolymers were then prepared via click reaction between PS(‐alkynyl)‐b‐PCL and an excess of azido‐terminated PNIPAM (PNIPAM‐N3). The removal of excess PNIPAM‐N3 was accomplished by “clicking” onto alkynyl‐functionalized Wang resin. All the intermediate and final products were characterized by gel permeation chromatography, 1H NMR, and FTIR. In aqueous solution, the obtained amphiphilic ABC miktoarm star terpolymer self‐assembles into micelles possessing mixed PS/PCL cores and thermoresponsive shells, which were further characterized by dynamic laser light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1636–1650, 2009  相似文献   

16.
Well‐defined (AB)3 type star block copolymer consisting of aromatic polyether arms as the A segment and polystyrene (PSt) arms as the B segment was prepared using atom transfer radical polymerization (ATRP), chain‐growth condensation polymerization (CGCP), and click reaction. ATRP of styrene was carried out in the presence of 2,4,6‐tris(bromomethyl)mesitylene as a trifunctional initiator, and then the terminal bromines of the polymer were transformed to azide groups with NaN3. The azide groups were converted to 4‐fluorobenzophenone moieties as CGCP initiator units by click reaction. However, when CGCP was attempted, a small amount of unreacted initiator units remained. Therefore, the azide‐terminated PSt was then used for click reaction with alkyne‐terminated aromatic polyether, obtained by CGCP with an initiator bearing an acetylene unit. Excess alkyne‐terminated aromatic polyether was removed from the crude product by means of preparative high performance liquid chromatography (HPLC) to yield the (AB)3 type star block copolymer (Mn = 9910, Mw/Mn = 1.10). This star block copolymer, which contains aromatic polyether segments with low solubility in the shell unit, exhibited lower solubility than A2B or AB2 type miktoarm star copolymers. In addition, the obtained star block copolymer self‐assembled to form spherical aggregates in solution and plate‐like structures in film. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
H‐shaped quintopolymer containing different five blocks: poly(ε‐caprolactone) (PCL), polystyrene (PS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) as side chains and poly(tert‐butyl acrylate) (PtBA) as a main chain was simply prepared from a click reaction between azide end‐functionalized PCL‐PS‐PtBA 3‐miktoarm star terpolymer and PEG–PMMA‐block copolymer with alkyne at the junction point, using Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as a catalyst in DMF at room temperature for 20 h. The H‐shaped quintopolymer was obtained with a number–average molecular weight (Mn) around 32,000 and low polydispersity index (Mw/Mn) 1.20 as determined by GPC analysis in THF using PS standards. The click reaction efficiency was calculated to have 60% from 1H NMR spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4459–4468, 2008  相似文献   

18.
Well‐defined star polymers consisting of tri‐, tetra‐, or octa‐arms have been prepared via coupling‐onto strategy using photoinduced copper(I)‐catalyzed 1,3‐dipolar cycloaddition click reaction. An azide end‐functionalized polystyrene and poly(methyl methacrylate), and an alkyne end‐functionalized poly(ε‐caprolactone) as the integrating arms of the star polymers are prepared by the combination of controlled polymerization and nucleophilic substitution reactions; whereas, multifunctional cores containing either azide or alkyne functionalities were synthesized in quantitatively via etherification and ring‐opening reactions. By using photoinduced copper‐catalyzed azide–alkyne cycloaddition (CuAAC) click reaction, reactive linear polymers are simply attached onto multifunctional cores to form corresponding star polymers via coupling‐onto methodology. The chromatographic, spectroscopic, and thermal analyses have clearly demonstrated that successful star formations can be obtained via photoinduced CuAAC click reaction. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1687–1695  相似文献   

19.
Aliphatic polycarbonate (PC) copolymer is synthesized by ring opening copolymerization of acrylate‐ and allyl‐functional cyclic carbonate monomers. The post‐polymerization functionalization of the resulting copolymer is performed quantitatively using a variety of thiol compounds via sequential Michael addition and photo‐induced radical thiol‐ene click reactions within relatively short reaction time at ambient temperature. This metal‐free click chemistry methodology affords the synthesis of biocompatible PC copolymer with multifunctional groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1581–1587  相似文献   

20.
A novel amphiphilic miktoarm star polymer, polystyrene‐poly(ethylene glycol)‐poly(methyl methacrylate), bearing a pyrene group at the end of PS arm (Pyrene‐PS‐PEG‐PMMA) was successfully synthesized via combination of atom transfer radical polymerization and click chemistry. The structure and composition of the amphiphilic miktoarm star polymer were characterized by gel permeation chromatography and 1H NMR. The functionalization of multiwalled carbon nanotubes (MWCNTs) via “π–π” stacking interactions with pyrene‐PS‐PEG‐PMMA miktoarm star polymer was accomplished and the resulting polymer‐MWCNTs hybrid was analyzed by using 1H NMR, UV–vis, fluorescence spectroscopy, and thermal gravimetric analysis. The high‐resolution transmission electron microscopy and analytical techniques aforementioned confirmed that the noncovalent functionalization of MWCNT's with the amphiphilic miktoarm star polymer was successfully achieved. The MWCNT/pyrene‐PS‐PEG‐PMMA exhibited significant dispersion stability in common organic solvents such as dimethyl formamide, chloroform, and tetrahydrofuran. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号