首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen‐bonded supramolecular polymers were prepared from the derivatives of α‐amino‐ε‐caprolactam (ACL), obtained from a renewable resource. Several self‐complimentary bis‐ or tetra‐caprolactam monomers were synthesized by varying the number of carbons of the spacer between the hydrogen‐bonding end groups. Physical properties of these hydrogen‐bonded polymers were clearly demonstrated by differential scanning colorimetry, solid‐state NMR, and X‐ray powder diffraction analyses. The supramolecular behavior was also supported by fiber formation from the melt for several of these compounds, and stable glassy materials were prepared from the physical mixtures of two different biscaprolactams. The self‐association ability of ACL was also used by incorporating ACL at the chain ends of low‐molecular weight Jeffamine (Mn = 900 g/mol) using urea and amide linkages. The transformation of this liquid oligomer at room temperature into a self‐standing, transparent film clearly showed the improvement in mechanical properties obtained by the introduction of terminal hydrogen‐bonding groups. Finally, the use of monomers with a functionality of four gave rise to network formation either alone or combination with bifunctional monomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
An 2‐ureido‐4[1H]pyrimidinone (UPy) motif with self‐association capability (through quadruple hydrogen bonds) was successfully anchored onto montmorillonite clay layers. Polymer/clay nanocomposites were prepared by specific hydrogen bonding interactions between surface functionalized silica nanoclays and UPy‐bonded supramolecular poly(ethylene glycol) or poly(?‐caprolactone). The mixed morphologies including intercalated layers with a non‐uniform separation and exfoliated single layers isolated from any stack were determined by combined X‐ray diffraction and transmission electron microscopic measurements. Thermal analyses showed that all nanocomposites had higher decomposition temperatures and thermal stabilities compared with neat polymer. The differential scanning calorimetric data implied that the crystallinity of polymers did not show essential changes upon introduction of organomodified UPy clays. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 650–658  相似文献   

3.
Three new ureidopyrimidinone(UPy)‐functionalized chain‐transfer agents (CTAs) have been synthesized for use in reversible addition‐fragmentation chain transfer (RAFT) polymerization. These UPy‐CTAs are able to polymerize a wide variety of vinyl monomers to yield UPy‐functionalized polymers, including homopolymers, block copolymers, and amphiphilic block copolymers. These polymers have been characterized via 1H and 13C NMR spectroscopy, gel permeation chromatography (GPC), UV/visible spectroscopy and differential scanning calorimetry (DSC) to demonstrate end‐group fidelity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
The precise synthesis and variation in the thermoresponsive property based on the supramolecular assembly of a novel urea end‐functionalized poly(N‐isopropylacrylamide) (PNIPAM) were studied. A series of PNIPAMs with different diphenylurea groups at the chain end (X? Ph? NH? CO? NH? Ph? trz? PNIPAM: X = H, OCH3, CH3, NO2, Cl, and CF3) were synthesized by using a combination of the atom transfer radical polymerization and the copper(I)‐catalyzed azide‐alkyne cycloaddition. The cloud point of the obtained polymers depended on the hydrogen‐bonding ability of the introduced urea group. The 1H NMR measurement suggested that the obtained PNIPAM assembled in water via the intermolecular hydrogen bonding by the terminal urea group. From the dynamic light scattering and transmission electron microscopy measurements, the aggregated nanoparticles of the resulting polymer were directly observed in water at a temperature below its cloud point. The hydrogen‐bonding property of the chain end urea group was concluded to be involved in the aggregation of the PNIPAM in water, leading to the variation in its cloud point. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6259–6268, 2009  相似文献   

5.
Well‐defined heterotelechelic poly(styrene) carrying thymine/diaminopyridine (DAP) (Mn,SEC = 9300, PDI = 1.04) and Hamilton wedge (HW)/cyanuric acid (CA) (Mn,SEC = 8200, PDI = 1.04) bonding motifs are prepared via a combination of controlled/living radical polymerization and copper catalyzed azide/alkyne “click” chemistry and are subsequently self‐assembled as single chains to emulate—on a simple level—the self‐folding behavior of natural biomacromolecules. Hydrogen nuclear magnetic resonance (1H NMR) in deuterated dichloromethane and dynamic light scattering analyses provides evidence for the hydrogen bonding interactions between the α‐thymine and ω‐DAP as well as α‐CA and ω‐HW chain ends of the heterotelechelic polymers leading to circular entropy driven single chain self‐assembly. This study demonstrates that the choice of NMR solvent is important for obtaining well‐resolved NMR spectra of the self‐assembled structures. In addition, steric effects on the HW can affect the efficiency of the self‐assembly process. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Poly(ethylethylene‐b‐ethylene oxide) (PEE‐PEO) diblock copolymers with pyridine‐benzoic acid end‐groups for heterodimeric hydrogen bonding were designed as a possible means to noncentrosymmetric organizations by spontaneous self‐assembly. These end‐functionalized polymers were synthesized by anionic living polymerization with protected initiator and terminating reagents. A series of polymeric intermediates with different end‐groups was characterized by proton nuclear magnetic resonance, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and gel permeation chromatography. Preliminary studies of solid‐state organization by differential scanning calorimetry and small‐angle X‐ray scattering provided evidence for a long‐range order that was sensitive to chain length, copolymer composition, and end‐group structure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 207–219, 2000  相似文献   

7.
Functionalization of polydimethylsiloxanes (PDMS) polymers with hydrogen‐bonding ureidopyrimidinone (UPy) groups leads to supramolecular thermoplastic elastomers. In previous studies, no lateral stacking of UPy dimers was observed in UPy‐functionalized polymers, unless additional urethane or urea groups were built into the hard block. However, we have shown that when PDMS is used as the soft block, this lateral aggregation of UPy dimers does take place, since long fibers could be observed in the atomic force microscopy (AFM) phase image. Also in bulk, the presence of these interactions was proven by oscillatory shear experiments. We attribute this aggregation to the incompatibility of soft block and hard block, leading to phase separation. Moreover, we have shown that additional urethane or urea groups in the hard block do lead to materials with more fibers and higher melting points. For the UPy‐urea functionalized PDMS even single fibers are observed with AFM when dropcasted from a very diluted solution. When the length of the soft block is increased, the morphology changes from fibrous to spherical. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3877–3885, 2008  相似文献   

8.
Carbon nanotubes (CNTs) are considered excellent materials for the construction of flexible displays due to their nanoscale dimensions and unique physical and chemical properties. By using the recognition properties of 2‐ureido‐4[1H]pyrimidinone (UPy), a versatile and simple methodology was demonstrated for the construction of macroscopic structures based on UPy‐CNT/polymer composites prepared by a combination of two functionalization approaches: 1) covalent attachment of UPy pendants on the multiwalled CNT surface ( UPy‐MWCNTs ) and 2) directed self‐assembly of UPy‐MWCNTs within polymers bearing UPy pendants ( Bis‐UPy 1 and Bis‐UPy 2 ) by quadruple complementary DDAA–AADD hydrogen‐bond recognition (D=donor, A=acceptor).  相似文献   

9.
Two series of aliphatic hydrocarbon‐based G1–G3 dendritic 2‐ureido‐4‐pyrimidinones (UPy) ( S‐Gn )2 and ( L‐Gn )2, differing from one another by the distance between the branching juncture to the urea end, were prepared and characterized. These hydrocarbon dendrons were also appended to a p‐aminonitrobenzene solvatochromic chromophore in order to probe their microenvironment polarity. While positive solvatochromism was observed which indicated the chromophore was solvent accessible, there was no significant difference between the microenvironment polarities on going from the G1 to the G3 dendrons. The self‐assembling behavior and tautomeric preference of the dendritic UPy derviatives were examined by 1H NMR spectroscopy. The dimerization constants (Kdim*) of the DDAA tautomers were unchanged at 107 M ?1 in CDCl3 at both 25 and 50 °C, which were comparable to those of UPy compounds bearing other nonpolar substitutents. Furthermore, the lower limits on the Kdim* of the DADA tautomeric forms of the ( S‐Gn )2 and ( L‐Gn )2 series were determined to be 106 and 105 M ?1 in CDCl3, respectively. It was found that a closer proximity of the dendron branching juncture to the UPy unit could lead to a destabilization effect on the dimeric states. Hence, the ( L‐Gn )2 dimers are more stable than those of ( S‐Gn )2 in the DDAA form, but the latter are more stable than the former in the tautomeric DADA state. This study showed that both the highly nonpolar microenvironment and the proximity of the dendritic branching juncture to the UPy motif could alter the strength and profile of the hydrogen bond‐mediated self‐assembling process.  相似文献   

10.
Hydrogen bonding self‐assemblies were formed in an aqueous medium from a pair of an amphiphilic ABA triblock copolymer and a hydrophobic homopolymer, both with a triple hydrogen bonding site that was complementary to each other and precisely placed at the main‐chain center: (PEGMA)m–(MMA)n– ADA –(MMA)n–(PEGMA)m and (MMA)p– DAD –(MMA)p ( A = hydrogen acceptor; D = hydrogen donor; PEGMA: PEG methacrylate; MMA: methyl methacrylate). The polymers were synthesized by the ruthenium‐catalyzed living radial polymerization with bifunctional initiators (Br– ADA –Br and Cl– DAD –Cl) aiming at pinpoint chain center functionalization to give a symmetric segmental sequence; ADA and DAD initiators were derived from 2,6‐diaminopyridine and thymine, respectively. On mixed equimolar in tetrahydrofuran (THF), both polymers spontaneously associated, and the apparently 1:1 assembly further grew into higher aggregate particles on subsequent addition of water. The aggregates in water/THF were relatively stable and uniform in size, which most likely stems from the intermolecular complementary hydrogen bond interaction at polymer chain centers. In sharp contrast, an equimolar mixture of ADA ‐block polymer and DAD ‐free poly(MMA) in water/THF resulted in larger and irregular particles, and thus short‐lived to eventually collapse. These results indicate that, however structurally marginal, precise pinpoint functionalization of macromolecular chains allows stable self‐assemblies via complementary hydrogen bond interaction even in aqueous media. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4498–4504  相似文献   

11.
Tetraphenylporphyrin‐end‐functionalized polycyclohexane (H2TPP‐PCHE) and its metal complexes (MTPP‐PCHE) were synthesized as the first successful example of porphyrin‐end‐functionalized transparent and stable polymers with a well‐controlled and defined polymer chain structure. Chloromethyl‐end‐functionalized poly(1,3‐cyclohexadiene) (CM‐PCHD) was synthesized as prerequisite prepolymer by the postpolymerization reaction of poly(1,3‐cyclohexadienyl)lithium and chloro(chloromethyl)dimethylsilane. CM‐end‐functionalized PCHE (CM‐PCHE) was prepared by the complete hydrogenation of CM‐PCHD with p‐toluenesulfonyl hydrazide. H2TPP was incorporated onto the polymer chain end by the addition of 5‐(4‐hydroxyphenyl)‐10,15,20‐triphenylporphyrin to CM‐PCHE. The complexation of H2TPP‐PCHE and Zn(OAc)2 (or PtCl2) yielded a zinc (or platinum) complex of H2TPP‐PCHE. H2TPP‐PCHE and MTPP‐PCHE were readily soluble in common organic solvents, and PCHE did not inhibit the optical properties of the H2TPP, ZnTPP, and PtTPP end groups. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Ureidopyrimidone (UPy) end‐functionalized linear and star‐shaped poly(ethylene‐co‐propylene)s (hydrogenated polyisoprene) with molecular weights between 12K and 90K and narrow molecular weight distributions (PDI = < 1.10) were studied with SAXS and AFM. These hydrogen bond end‐functionalized polymers (0.45–1.14 mol.‐% UPy end‐groups) unexpectedly exhibited microphase separated domains with interdomain spacings of approximately 10–15 nm suggesting a solid‐state clustering of the hydrogen bonding end‐groups beyond simple dimerization. The interdomain spacings that were obtained from SAXS measurements systematically increased with molecular weight and decreased for monofunctional oligomers relative to telechelic analogs of the identical molecular weight. Variable temperature AFM measurements confirmed the presence of microphase separation at the surface for the star‐shaped UPy end‐functional poly(ethylene‐co‐propylene) and revealed a decrease in phase contrast upon heating to 130 °C with retention of the microphase separated texture.

  相似文献   


13.
In this study, we used click chemistry to synthesize a new macromolecular self‐assembling building blocks, linear polypeptide‐b‐polyhedral oligomeric silsesquioxane (POSS) copolymers, from a mono‐azido–functionalized POSS (N3‐POSS) and several alkyne‐poly(γ‐benzyl‐L ‐glutamate) (alkyne‐PBLG) systems. The incorporation of the POSS unit at the chain end of the PBLG moiety allowed intramolecular hydrogen bonding to occur between the POSS and PBLG units, thereby enhancing the α‐helical conformation in the solid state, as determined through Fourier transform infrared spectroscopy and wide‐angle X‐ray diffraction analyses. POSS‐b‐PBLG underwent hierarchical self‐assembly, characterized using small‐angle X‐ray scattering, to form a bilayer‐like nanostructure featuring α‐helical or β‐sheet conformations and POSS aggregates. Thermogravimetric analysis indicated that the thermal degradation temperature increased significantly after incorporation of the POSS moiety, which presumably formed an inorganic protection layer on the nanocomposite's surface. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
A new type of poly(methyl acrylate)‐co‐(acrylic acid) (PMA‐AA) networks obtained by combining hydrogen bonding with controlled crosslinking exhibit full and rapid shape‐memory recovery. The structure, thermal properties, dynamical mechanical properties and shape‐memory effects of these networks were presented. High modulus ratios were achieved for the series of PMA‐AA networks based on intense self‐complementary hydrogen bonding in poly(acrylic acid) (PAA) segments. This lead to excellent shape‐memory effects with strain‐recovery ratio above 99%. Meanwhile, faster recovery speed was achieved by the synergistic effect of hydrogen bonding and controlled crosslinking compared to the linear PMA‐AA copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1241–1245, 2011  相似文献   

15.
The effect of the repeated unit length on the substantially increasing molecular motion and entropy change (?TΔSm) of polymer blends was investigated with solid‐state 13C NMR and differential scanning calorimetry within a miscible window. The hydrogen‐bonding strength, from the formation of the phenolic–polyester interaction, was not high enough to overcome the breaking‐off of the self‐association of the phenolic. With respect to the increasing repeated unit length, the polyester resonance intensity of the solid‐state 13C NMR spectra was weakened because of the reduction in the cross‐polarization efficiency in highly mobile samples. The glass‐transition temperature of the blend and the proton spin–lattice relaxation time from NMR experiments were also reduced. The effect of the reduced hydrogen‐bonding strength on blending brought about a tendency of higher entropy (?TΔSm) and higher molecular mobility of the blend. Accordingly, poly(decamethylene adipate) possessed the longest repeated unit length and exhibited the most mobile one in this phenolic/polyester blend family. The molecular segmental motion and entropy progressively increased while the repeated unit length of the guest polymers increased within a miscible window. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 679–686, 2003  相似文献   

16.
Star polymers with end‐functionalized arm chains (surface‐functionalized star polymers) were synthesized by the in situ linking reaction between ethylene glycol dimethacrylate (linking agent) and an α‐end‐functionalized linear living poly(methyl methacrylate) in RuCl2(PPh3)3‐catalyzed living radical polymerization; the terminal on the surface functionalities included amides, alcohols, amines, and esters. The star polymers were obtained in high yields (75–90%) with initiating systems consisting of a functionalized 2‐chloro‐2‐phenylacetate or ‐acetamide [F? C(O)CHPhCl; F = nPrNH? , HOCH2CH2O? , Me2NCH2CH2O? , or EtO? ; initiator] and n‐Bu3N (additive). The yield was lower with a functionalized 2‐bromoisobutyrate [Me2NCH2CH2OC(O)CMe2Br] initiator or with Al(Oi‐Pr)3 as an additive. Multi‐angle laser light scattering analysis showed that the star polymers had arm numbers of 10–100, radii of gyration of 6–23 nm, and weight‐average molecular weights of 1.3 × 105 to 3.0 × 106, which could be controlled by the molar ratio of the linking agent to the linear living polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1972–1982, 2002  相似文献   

17.
A facile method to prepare shape memory polymers crosslinked by SiO2 is described. A series of biodegradable shape memory networks were obtained through thiol‐ene reaction triggered by UV irradiation between surface‐thiol‐modified SiO2 nanoparticles and end‐acrylate poly (ε‐caprolactone) (PCL). The highly selective thiol‐ene reaction ensured a uniform distribution of PCL chains between crosslinkers, contributing well‐defined network architecture with enhanced mechanical and shape‐memory properties. Thiol‐functionalized silica nanoparticle was characterized by using FTIR and XPS analysis, and 1H NMR spectra was used to confirm the successful modification of terminal hydroxyl group of PCL diol. Surface‐modified silica particles were found well dispersible in acrylate‐capped PCL supported by SEM. Thermal and crystalline behaviors of the obtained polymers were analyzed by DSC and XRD, and DMA measurement proved good mechanical property. The shape memory behavior and tensile strength was somewhat tunable by the length of PCL. Acceptably, sample SiO2‐SMP2k presented 99% recovery ratio and 97% shape fixity, and its relatively high tensile strength showed an attractive potential for biomedical application. Finally, a possible molecular mechanism accounting for the shape memory property was illustrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 692–701  相似文献   

18.
Supramolecular polyurethane ureas are expected to have superior mechanical properties primarily due to the reversible, noncovalent interactions such as hydrogen bonding interactions. We synthesized polyurethane prepolymers from small molecular weight of poly(tetramethylene ether)glycol and isophorone diisocyanates, which were end capped with propylamine to synthesize polyurethane ureas with high contents of urea and urethane groups for hydrogen‐bonding formations to facilitate self‐healing. The effects of polyurethane urea molecular weight (3000 ≤ Mn ≤ 9000), crosslinking, and cutting direction were studied in terms of thermal, mechanical, and morphological properties with an emphasis on the self‐healing efficiency. It was found that the thermal self‐healability was more pronounced as the molecular weight of polyurethane urea decreased, showing a maximum of more than 96% with 3000 Mn when the sample was cut along the stretch direction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 468–474  相似文献   

19.
A series of nucleobased polymers and copolymers were synthesized through atom transfer radical polymerization (ATRP). Biocomplementary DNA‐ and RNA‐like supramolecular complexes are formed in dilute DMSO solution through nucleobase recognition. 1H NMR titration studies of these complexes in CDCl3 indicated that thymine‐adenine (T‐A) and uracil‐adenine (U‐A) complexes form rapidly on the NMR time scale with high association constants (up to 534 and 671 M–1, respectively) and result in significant Tg increase. WAXD and differential scanning calorimetry analyzes in the bulk state indicate the presence of highly physical cross‐linked structures and provide further details into the nature of the self‐assembly of these systems. Furthermore, this study is of discussion on the difference in the hydrogen bond strength between T‐A and U‐A base pairs within polymer systems, indicating that the strength of hydrogen bonds in RNA U‐A pairs is stronger than that in DNA T‐A base pairs. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6388–6395, 2009  相似文献   

20.
Constructing a solid electrolyte interface (SEI) is a highly effective approach to overcome the poor reversibility of lithium (Li) metal anodes. Herein, an adhesive and self‐healable supramolecular copolymer, comprising of pendant poly(ethylene oxide) (PEO) segments and ureido‐pyrimidinone (UPy) quadruple‐hydrogen‐bonding moieties, is developed as a protection layer of Li anode by a simple drop‐coating. The protection performance of in‐situ‐formed LiPEO–UPy SEI layer is significantly enhanced owing to the strong binding and improved stability arising from a spontaneous reaction between UPy groups and Li metal. An ultrathin (approximately 70 nm) LiPEO–UPy layer can contribute to stable and dendrite‐free cycling at a high areal capacity of 10 mAh cm?2 at 5 mA cm?2 for 1000 h. This coating together with the promising electrochemical performance offers a new strategy for the development of dendrite‐free metal anodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号