首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
Temperature and concentration dependences of mercury-199 chemical shifts in benzene solutions of bis(methylethylketone)mercury Hg(CH2COC2H5) (I) and α-bis(methylacetoacetone)mercury Hg(CH2COCH2COOCH3)2 (II) are determined by the 1H-{199Hg}method. The NMR data obtained and the IR spectra are indicative of selfassociation of I and II in solution with the formation of weak intermolecular coordination bonds Hg ← :OC. The enthalpies of complex formation calculated on the assumption of one mercury atom bonding with only one carbonyl function are equal to ?3.2 ± 0.1 kcal/mol and ?2.2 ± 0.1 kcal/mol for I and II, respectively.  相似文献   

2.
Diiodobis(diphenyltelluride)mercury(II), [(Ph2Te)2HgI2], is formed during the reaction of [(PhTe)2Hg] with HgI2 in refluxing THF. The same product can be obtained from a pressure reaction between PhTeI3 and elemental mercury. The mercury atom is co‐ordinated in a distorted tetrahedral environment with I‐Hg‐I angles of 117?. Long range I···Te contacts of about 3.8 Å link the [(Ph2Te)2HgI2] units to infinite chains along the b axis of the unit cell.  相似文献   

3.
Aluminium metal is dissolved in 3 M HNO3 with mercury(II) nitrate as a catalyst. Visible oscillations in gas evolution are observed for 2×10–4 M Hg(NO3)2 dissolving solutions. The oscillations are followed quantitatively by monitoring both solution temperature and the intensity of a UV-visible transmittance peak at 369 nm. This peak is attributed to mercury(I) species in solution.  相似文献   

4.
The problem of stabilizing the linear clusters of mercury by terminal groups is discussed in terms of the MNDO method for the following model and real compounds: Hgn (I), HgnCl2 (II) and Hgn(AlCl4)2 (III) with n=2–4. It is shown that the terminal acceptor groups stabilize the linear mercury chains. It is established that in systems (II) and (III), unlike in (I), the highest occupied molecular orbitals are bonding. Mordoviya State University. Institute of Organoelement Compounds, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 4, pp. 623–629, July–August, 1995. Translated by I. Izvekova  相似文献   

5.
The mercury perrhenates with the empirical formulas HgReO4 and Hg2ReO5 were prepared by annealing powdered mixtures of mercury(II)oxide and mercury(II)metaperrhenate Hg(ReO4)2 in sealed silica tubes. Their crystal structures were determined from single-crystal X-ray data. HgReO4 crystallizes dimeric with nearly linear O3Re? O? Hg? Hg? O? ReO3 molecular units and Hg2ReO5 has a solid state structure, where Hg(I) and Hg(II) together with oxygen atoms form 14-membered rings, which are condensed to two-dimensionally infinite polycationic nets of composition (Hg22+ · 2 HgO)n. These nets are separated from each other by tetrahedral ReO4? anions.  相似文献   

6.
Several complexes of N,N′-diethylthiourea (Dietu) with zinc(II), cadmium(II) and mercury(II) halides were prepared and characterized by i.r. (4000–60 cm?1), raman (400–60 cm?1), in the solid state and n.m.r. and conductometric methods in solution. The complexes Zn(Dietu)2X2, Cd(Dietu)2X2 (X ? Cl, Br, I) and Hg(Dietu)2X2 (X ? Br, I) are tetrahedral species in which intramolecular ? NH …? X interactions have been observed. The 1:1 mercury(II) complexes, Hg(Dietu)X2 (X ? Cl, Br), appear to have a dimeric tetrahedral halide-bridged structure in the solid state. In all these complexes N,N′-diethylthiourea is sulphur-bonded to the metal.  相似文献   

7.
A novel cyclic thiourea, 5-acetyl-4,6-dimethyl-1,2,3,4-tetrahydropyrimidine-2-thione (L), was synthesized by the reaction of N-(1-tosylethyl)thiourea with potassium enolate of acetylacetone followed by acid-catalyzed dehydration of the obtained 5-acetyl-4-hydroxy-4,6-dimethylhexahydropyrimidine-2-thione. Its polymorphs and complexes with zinc, cadmium, and mercury iodides were studied by X-ray diffraction. Two polymorphs of 5-acetyl-4,6-dimethyl-1,2,3,4-tetrahydropyrimidine-2-thione differ in ring conformation and packing manner. In the monomeric cadmium complex [CdL2I2], the central atom is tetrahedrally coordinated in the standard manner by iodine and thiocarbonyl S atoms, while in the dimeric mercury complex [Hg2L2I4], every mercury atom is coordinated by two bridging I atoms, one terminal I atom and one thiocarbonyl S atom of the ligand. In the polymeric zinc complex [ZnLI2], the zinc tetrahedra are linked by the bidentate bridging 5-acetyl-4,6-dimethyl-1,2,3,4-tetrahydropyrimidine-2-thione molecules through thiocarbonyl S atom and acetyl O atom.  相似文献   

8.
Bis(triethylsilyl)mercury (I) and triethylsilyl(pentaethyldisilanyl)mercury (II) react with metallic sodium or potassium in benzene solution to give phenyltriethylsilane (III) and a mixture of III and 1-phenyl-2,2,3,3,3-pentaethyldisilane, respectively, instead of the expected silylmetallic compounds (e.g. Et3SiM and Et5Si2M, where M = Na or K). These results may be explained by the intermediate formation of silylmetallic compounds which reacted with the solvent. The reaction of I with potassium in toluene proceeds analogously.  相似文献   

9.
The electrochemical reduction behaviour of perfluoro-n-hexyl iodide, C6F13I, has been studied at the mercury electrode in dimethylformamide as a solvent. The major reaction product of the controlled-potential electrolysis of C6F13I is the organomercuric compound (C6F13)2Hg. Using conventional polarography and linear sweep voltammetry, it is concluded that a chemical prereaction occurs between the perfluoro-n-hexyl iodide and polarized mercury, yielding the perfluoro-n-hexyl mercury iodide C6F13HgI, which is itself reducible in two separate steps. A detailed mechanism of the electrochemical reduction of C6F13I is proposed and discussed.  相似文献   

10.
The crystal structures of 16 mercury(I)- and mercury(I, II)-containing minerals having (Hg-Hg)2+ groups are considered. The Hg-Hg and Hg-X bond lengths and the HgHgX angles (X = Cl, Br, I, O, S) are analyzed. A comparative crystal chemical analysis of the environment of Hg atoms is carried out. The Hg-Hg and Hg-X distances vary within 2.43-2.60 and 1.93-2.43 å, respectively; the angles defining the deviation of the X-Hg-Hg-X groups from linearity are from 146 to 177?. In most cases, the coordination environment of the mercury atoms involves the metal atom of the (Hg-Hg)2+ dumbbell and the X atom, but in several compounds the coordination number of the mercury atoms increases due to the additional atoms lying 2.5–3.5 å away. In terlinguaite and kuznetsovite, the Hg3 triangle is rather unusual; in the latter mineral, the Hg-Hg bonds are lengthened to 2.64-2.70 å. The review covers structural data up to May 1997.  相似文献   

11.
Sulfite ion was determined in the 0.4 to 12-ppm range by reaction with insoluble mercury(I) chloride to form the soluble Hg(SO3)2staggered2? ion and elemental mercury. The uv absorption of the sulfite complex or an anion species, HgX4staggered2?, formed on adding an excess of KBr, KCl, KI, or KSCN is measured. The mercury(II) in solution can also be determined by lowering the pH, adding KCl, and forming the crystal violet adduct of the HgCl3staggered? ion. This adduct is extracted into benzene and the absorbance measured at 605 nm.  相似文献   

12.
A simple spectrophotometric procedure is described for the determination of traces of mercury, with solubilized copper(II) dithizonate. Sample water containing 0.05–0.25 μg of mercury(II) is mixed with an aqueous solution of copper dithizonate containing Triton X-100 at pH 1 (H2SO4 ). After 5 min, dual-wavelength photometry is used to measure the difference in absorbances at 507 and 493 nm, which is proportional to the mercury concentration. The advantages are that no reagent blank is necessary and the equipment is simple. Few cations interfere; silver(I) and iron(III) can be masked by chloride and fluoride, respectively.  相似文献   

13.
The processes of thermal decomposition of silver(I) and mercury(I) anthranilates and salicyloaldoximates were studied. Thermal, chemical and X-ray analyses and infrared spectroscopy were used to determine the mechanisms of decomposition of these complexes. The factor determining the decomposition is the character of the Ag+ and Hg 2 2+ ions, which are easily reduced to free metals. The final reaction product of the compounds of silver is the pure metal; the compounds of mercury are volatilized completely when heated.  相似文献   

14.
Reaction mechanism of 1,1,1-trifluorotrichloroethane (CF3CCl3) and sulphur trioxide (SO3) in the presence of mercury salts (Hg2SO4 and HgSO4) was studied applying the density functional theory (DFT) at the UB3LYP/6-31+G(d,p) level. It was found that this reaction occurs in the free radical chain path as follows: mercury(I) sulphate free radical is generated by heat, causing CF3CCl3 to produce the CF3CCl2 free radical which reacts with SO3 leading to the formation of CF3CCl2OSO2 decomposing into CF3COCl and SO2Cl. The SO2Cl free radical triggers CF3CCl3 to regenerate CF3CCl2 which recycles the free radical growth reaction. This elementary reaction has the highest energy barrier and it is therefore the rate control step of the whole reaction path. Experiment data can confirm the existence of the mercury(I) salt free radical and the free radical initiation stage. So, mercury salts play the role of initiators not that of catalysts. The results agree well with our hypothesis.  相似文献   

15.
Two dinuclear mercury(II) iodide compounds, [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ) [L = N,N′‐bis(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine and L′ = N‐(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine] were synthesized and characterized. The molecular structures of [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ), which were determined by single‐crystal X‐ray diffraction, indicate that each HgII in 1 has a distorted tetrahedral environment around the metal atom with a HgN2I2 chromophore, whereas in 2 one mercury(II) atom adopts a distorted tetrahedral arrangement with a HgI4 chromophore and the other has a distorted square pyramidal environment with HgN3I2 chromophore. In the solid state, compound 2 consists of a 1D coordination polymer structure.  相似文献   

16.
The electrochemical characteristics of the Cu (II)/Cu (I) and the Cu (I)/Cu (0) couples at platinum, carbon, mercury and copper have been studied in acetonitrile-water (AN-H2O) mixtures. All the electrode processes are moderately fast with mercury the fastest but slower on platinum and carbon paste in that order. A slow chemical step precedes oxidation of Cu (I) to Cu (II) on allectrodes in solutions of high AN content. The slow step may be partial removal of AN from the solvated Cu (I) ion prior to electron transfer. Electrode processes are faster in chloride ions than in sulfate ion solutions. Reduction of Cu (I) in AN–H2O is quite slow on glassy carbon. Adsorption of AN on platinum and carbon influences the processes. Diffusion coefficients in sulfate solutions are in the order, Cu (I) (AN–H2O)>Cu (II)(AN–H2O)>Fe (III)(H2O) and 2-hydroxy-cyanoethane (2-HCE) strongly decreases the mobility of Cu (I) when added to H2O. The relevance of the measurements to hydrometallurgical processes is considered. CuSO4 in 30% v/v AN–H2O is a faster oxidant than the common oxidant Fe2(SO4)3 in H2O because of the greater mobility and faster electron acceptance from a corroding surface of Cu (II). Only in solutions of very high nitrile content is the reduction potential of CuSO4 as high as that of Fe2(SO4)3 in H2O.  相似文献   

17.
A method for the speciation of mercury in gas condensates is reported. Mercury(II) chloride (HgCl2), methylmercury chloride (MeHgCl), phenylmercury acetate (PhHgAc) and diphenylmercury (Ph2Hg) are separated by reversed-phase high-performance liquid chromatography (HPLC) using gradient elution. Prior to the determination, the organic ligands and the matrix were destroyed by oxidation with K2Cr2O7. Mercury is detected with cold-vapor atomic absorption spectrometry (CVAA), where the mercury compounds are reduced to metallic mercury by a treatment with NaBH4. In a continuous-flow system the concentrations of the reagents used are optimized using a modified simplex algorithm. Detection limits for mercury are at the 10 ng ml?1 level. Analysis of multi-compound mixtures indicates that chemical reactions between HgCl2 and Ph2Hg and between MeHgCl and Ph2Hg take place. The method developed was applied to the speciation of mercury in gas condensates and did not require use of any solvent extraction or chemical derivatization steps. In the gas condensates, mercury(II) compounds were found to be present at the 100 ng ml?1 level.  相似文献   

18.
The polarographic behaviour of Ce(acac)4, Ce(acac)3, Eu(acac)3, Fe(acac)3, Cr(acac)3, Co(acac)3, Mn(acac)3, NaMn(acac)3, Mn(acac)2, Ni(acac)2, Cu(acac)2, VO(acac)2, Fe(hfacac)3, Cr(hfacac)3 and Cu(hfacac)2 has been studied in acetonitrile on the dropping mercury electrode. Half-wave potentials versus bisbiphenylchromium(I)/(0), the reversibility of the electrode reaction and the number of electrons participating in the electrode processes measured by coulometry are reported. Cyclovoltammetric measurements have been performed on the hanging mercury drop electrode and on the stationary platinum electrode, the data of these studies are given. quite different behaviour has been observed on the platinum electrode compared to the dropping mercury electrode. Large scale electrolysis was employed to obtain information on the reaction products. The influence of the electrode material and the reaction mechanisms are discussed.  相似文献   

19.
The Schiff base NN′-ethylenebis(salicylideneimine), H2 salen reacts with hydrous and anhydrous Zinc, Cadmium and Mercury(II) salts to give complexes M(H2 salen)X2·nH2O (M = Zn, Cd, Hg; XCl, Br, I, NO3; MZn, X2SO4; n = 0?2). Spectroscopic and other evidence indicated that; (i) halide and sulphate are coordinated to the metal ion, whereas the nitrate group is ionic in mercury nitrate compound and covalently bonded in zinc and cadmium nitrato complexes, (ii) the Schiff base is coordinated through the negatively charged phenolic oxygen atoms and not the nitrogen atoms, which carry the protons transferred from phenolic groups on coordination, (iii) therefore the coordination numbers suggested are 4-, in mercury and 4- or 6- in zinc and cadmium Schiff base complexes.  相似文献   

20.
A method for the rapid separation of copper(II) traces on metallic mercury is proposed. The separation is rendered possible by the reduction of Cu(II) to Cu(I) on mercury in the presence of iodide ions followed by the adsorption of the uncharged complex, Cu(I), on Hg0. After a minute of agitation, this adsorption is quantitative (90–100%) for initial concentrations of Cu(II) between 10?4 to 10?6 M and iodide cone, of 10?2 to 10?3 M at pH 3. The volumes of the aqueous solutions are of the order of 3–10 ml and those of the drops of mercury between 0.5–1 ml. The tests were made using the isotope 64Cu (T 1/2 = 12.8 h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号