首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
镧涂层表面效应初探   总被引:2,自引:0,他引:2  
本实验通过对涂镧石墨管和非涂镧石墨管的电子显微分析,证实了镧涂层并未能对石墨管壁的孔洞起到有效的填充作用,这与测定金时吸收信号未明显变化的实验现象相吻合。通过对锡原子化前后石墨表面的X光电子谱分析,尝试提出了镧在管中的催化作用及影响某些元素原子化机理、从而改变其灵敏度的观点。  相似文献   

2.
石墨炉了原子吸收光谱法测定高温合金中镓   总被引:2,自引:0,他引:2  
研究了普通石墨管,平台石墨管和涂钼普通石管对镓的测定性能,得出涂钼普通石墨管对镓的测定灵敏度和重现性均好于其他石墨管,从而建立了一种更为满意的石墨炉子原子吸收测定高温合金中镓的新的方法。  相似文献   

3.
对石墨管表面进行难熔碳化物涂覆处理,是原子吸收分析中一种操作简单、成本低廉的石墨管改进技术。通常认为,管内的锆涂层可以减少试液及原子蒸气通过管壁的渗透、阻止某些待测元素与管壁直接接触生成难熔碳化物,并可能参与管内的化学反应。我们对涂锆与非涂锆管进行了电子显微形貌观察,并选择锑、锡在涂锆管与非涂锆管中进行了原子吸收测定的对比,以期对试验现象及锆涂层在石墨管内的主要作用做一些初步的探讨。  相似文献   

4.
石墨炉原子吸收法测定锡多用于金属试样分析。池田等曾以镧作共沉淀剂,在氨性介质中使锡共沉淀,然后于1N硝酸中,利用镧的增感效应,以石墨炉原子吸收法测定了金属锌和铜中锡。本文拟定了石墨炉原子吸收测定岩石中锡的方法,以钼酸铵作添加剂,不仅可以增强待测元素锡的吸收信号,还可以抑制某些共存元素的干扰,可不经分离直接测定岩石试样中0.2~0.00005%的锡。方法简便,精密度和准确度均令人满意。本方法也可应用于生物组织及其它试样中锡的测定。  相似文献   

5.
石墨炉原子吸收光谱法测定高温合金中镓   总被引:1,自引:0,他引:1  
研究了普通石墨管、平台石墨管和涂钼普通石墨管对镓的测定性能.得出涂钼普通石墨管对镓的测定灵敏度和重现性均好于其他石墨管.从而建立了一种更为满意的石墨炉原子吸收测定高温合金中镓的新方法.  相似文献   

6.
彭兰乔  姚金玉 《分析化学》1994,22(11):1135-1137
在6mol/L盐酸介质和0.1%KBH4条件下,不但能有效地发生硒的氢化物,而且5mg/mlNi和3mg/mlFe都不干扰硒的测定。利用涂钯石墨;管作为氢化物的原子化器,直接测定了高温镍基合金中的硒,特征质量为40pg,相对标准偏差在6.1%以内,回收率在97%-110%之间。  相似文献   

7.
以苯基荧光酮作沉淀剂,在pH2.0的条件下,直接沉淀捕集水样中痕量锗,并提出了石墨炉原子吸收光谱法测定水样中痕量锗的方法。采用涂钨石墨管,添加镧作基体改进剂消除测定锗时的基体干扰,提高测定的灵敏度。用一级标准物质对方法进行了验证,其检出限(S/N=3)为0.3μg·L^-1,样品加标回收率在95.2%~103.0%之间,相对标准偏差小于5%。  相似文献   

8.
涂层石墨管的制备和应用——铝合金中锡的测定   总被引:1,自引:0,他引:1  
本文研究了各种涂层石墨管的制备方法和应用效果,提出了用超声浸渍法处理石墨管,大大地缩短了处理时间,效果良好。用涂层管测定锡,灵敏度和精密度都得到提高,应用于铝合金中锡的测定,结果较满意。  相似文献   

9.
石墨炉原子吸收测定中使用普通石墨管引起的问题及其改进技术已有文献报导。本文在文献基础上,应用涂锆石墨管测定锗对石墨管改进技术中难熔碳  相似文献   

10.
镧锆涂覆石墨管的制备及其在测定地面水中痕量锰的应用   总被引:1,自引:0,他引:1  
吴奇藩  周淑贞 《分析化学》1992,20(4):407-409
本文研究La和Zr混合溶液涂覆石墨管的方法,并将其和涂La石墨管在性能、工作条件进行多方面的比较。结果表明,La-Zr涂覆石墨管能够提高某些元素的测定灵敏度、灰化温度,稳定性和使用寿命。本文还研究了采用La-Zr石墨管测定地面水中痕量锰的分析条件及其他离子的干扰试验。  相似文献   

11.
We investigated of the kinematic viscosity of liquid Cu–Sn alloys upon heating and subsequent cooling by the method of the oscillating cylinder. For the liquids alloys Cu75Sn25, Cu50Sn50, Cu48Sn52, Cu32Sn68, and Cu17Sn83, the temperature dependencies of the viscosity upon heating deviate from the Arrhenius relation. The temperature dependencies of viscosity show the Arrhenius-like behaviour upon cooling for all investigated alloys. A discrepancy between the temperature dependencies of viscosity obtained upon heating and cooling arised. We built the concentration dependences of the kinematic viscosity of liquid Cu–Sn alloys upon cooling. The increase of the values of viscosity and activation energy of viscous flow in the concentration range corresponding to the existence of intermetallic compounds Cu3Sn in the solid state was observed. These results were qualitatively interpreted using the concept of microheterogeneities of liquid alloys.  相似文献   

12.
The effect of Sn content on properties of anodic film formed on PbSn alloys in sulfuric acid solution was investigated using linear sweeping voltage (LSV), cyclic voltammetry (CV), and a.c. voltammetry (ACV), based on the Mott-Schottky analysis. The results revealed that the addition of Sn into lead alloys can promote the corrosion resistance property and could decrease the impedance of anodic film; these results were more remarkable with enhancing the Sn content. The over potential of oxygen evolution on lead alloys enhanced with the increase of Sn content. The Mott-Schottky analysis indicated that the passive film appeared an n-type semiconductor, and the donor density of passive film increased with increasing Sn content. The increased vacancies in the passive film with Sn content increasing could illustrate this trend.  相似文献   

13.
The fabrication of three-dimensional (3D) porous bismuth by electrochemical dealloying of two-phase Sn–Bi alloys was investigated. The results show that the resulting porous bismuth changes from a microporous structure composed of bismuth microparticles to an aligned nanowire matrix composite as the Bi content in the Sn–Bi master alloy decreases. Single-crystal bismuth nanowires growing in the [110] direction were fabricated by the selective dissolution of the Sn phase from an alloy with ultralow Bi content. The influence of the two states of elemental Bi existing in smelted Sn–Bi alloys during dealloying was systematically analyzed and discussed. This report presents a novel strategy for direct fabrication of bismuth nanowires by electrochemical dealloying.  相似文献   

14.
Ni-base alloys has been widely used for chemical plants because of their high strength and excellent oxidation resistance. In particular, the addition of Sn and Sb in Ni-base alloys significantly improves the metal dusting resistance. It is indicated that Sn and Sb are segregated on the alloy surface in the metal dusting environment; however, the details have not been clarified yet. The behavior of the Ni-Sn and Ni-Sb alloys under a high-temperature oxidation environment was investigated by in situ X-ray photoelectron spectroscopy (XPS). It was confirmed that Sn and Sb have been segregated at the surface of their alloys during oxidation in low oxygen potential, PO2, environment. These results indicate that Sn and Sb segregation improves the metal dusting resistance.  相似文献   

15.
Co-Sn合金作为锂离子电池负极材料的研究   总被引:9,自引:0,他引:9  
采用高能机械球磨法合成了富Co的Co3Sn2合金, 测试了Co-Sn合金作为锂离子电池负极材料的充放电性能. 考察了在机械球磨过程中加入碳和高温处理球磨后样品对合金组成和电化学性能的影响. XRD测试结果表明, 加入碳后所得样品的主要成分为CoSn2. 于400和600 ℃处理后主要成分转变为CoSn和Co3Sn2. CoSn2, CoSn和Co3Sn2的充放电容量随着Sn含量的降低依次降低, 但循环性能得到提高.  相似文献   

16.
The results of calorimetric study and thermal analysis of binary Al–Sn system are presented in this paper. The Oelsen calorimetry was used in thermodynamic analysis. Following thermodynamic properties were determined at 727 °C: activities, activity coefficients, partial/integral molar Gibbs excess, and mixing energies. The energetics of mixing in liquid Al–Sn alloys has been analyzed through the study of concentration fluctuation in the long-wavelength limit. Thermal analysis of selected alloys in Al–Sn system was done using differential thermal analysis. Defined characteristic phase transition temperatures were used for comparison with calculated phase diagram of investigated system. Good agreement with available literature data was obtained. Structural analysis of selected alloys was done using optic microscopy.  相似文献   

17.
The variations of thermal conductivity with temperature for Pb–Sn alloys were measured using a radial heat flow apparatus. The variations of electrical conductivity with the temperature for same alloys were determined from the Wiedemann–Franz law by using the measured values of thermal conductivity. According to present experimental results, the thermal and electrical conductivity of Pb–Sn alloys linearly decrease with increasing temperature but exponentially increase with increasing the composition of Sn. The enthalpy of fusion and the change of specific heat for Pb–Sn alloys were also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from eutectic liquid to eutectic solid.  相似文献   

18.
The Sn?CZn?CAl system was studied in connection with the possible substitution of lead-based solders for temperatures up to 350?°C. Ternary alloys with up to 3?wt% of aluminium were prepared. The investigated alloys lie close to the monovariant line (eutectic valley) of the Sn?CZn?CAl system. The temperatures of phase transitions of six binary Sn?CZn reference alloys and fourteen ternary Sn?CZn?CAl alloys using DTA method were investigated in this paper. DTA experiments were performed at the heating/cooling rate of?4?°C?min?1 using Setaram SETSYS 18TM experimental equipment. The temperatures of phase transitions in the ternary Sn?CZn?CAl system were obtained, namely, the temperature of ternary eutectic reaction T E1 (197.7?±?0.7?°C), temperature of ternary transition reaction T U1 (278.6?±?0.7?°C), temperatures of liquidus and other transition temperatures for studied alloys. Temperatures obtained during DTA heating runs were used as authoritative. DTA curves obtained during cooling enabled realising better differentiation of the obtained overlapped heat effects (peaks) during heating. Theoretical isopleths of the Sn?CZn?CAl phase diagram were calculated using the Thermocalc software and MP0602 thermodynamic database. Experimental data were compared with the calculated temperatures, and a good agreement was obtained.  相似文献   

19.
The effects of 1 wt.% Ca or 1 wt.% Ca + 1 wt.% Ag addition and heat treatment on the corrosion behavior of Mg-7Sn (wt.%) alloy in 3.5 wt.% NaCl solution were investigated by electrochemical measurements and immersion tests. The alloys were characterized by optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It was found that all alloys were corroded by pitting corrosion and grain boundary corrosion and further corroded with time going. Loose layers of compounds, including Mg (OH)2, MgO, SnO2, and other compounds containing Ca and Ag elements, were calibrated on the surface of corroded Mg-7Sn-1Ca-1Ag alloy. The Ca addition improved the corrosion resistance of Mg-7Sn alloy due to the formation of relatively stable compounds containing calcium element and grains refinement. Furthermore, the solid solutioned alloys obtained a superior corrosion resistance due to the dissolve of eutectic Mg2Sn phase and homogenization treatment. However, the aging treatment is slightly detrimental to the corrosion resistance of Mg-7Sn alloys with the formation of Mg2Sn precipitates. In conclusion, the aged Mg-7Sn-1Ca-1Ag alloy exhibited a better corrosion resistance and a noticeable micro-hardness property compared with those of as-cast Mg-7Sn alloy. And this study provides an important idea for the research on the comprehensive properties of Mg-Sn alloys.  相似文献   

20.
Summary It has been shown that Pb, Sn and In form alloys with the Pd matrix modifier during the ashing and the beginning of the atomization process in graphite furnace atomic absorption spectrometry.Pb and Sn were chosen as analytes and Ag, Sb, Cu, Au, Pt, Pd, Cd, and Mg as co-existing elements or matrix modifiers. The activity coefficients of Pb in the alloys Pb-Ag and Pb-Sb are similar to the value of Pb alone (or about 1.0), and those in the alloys Pb-Au, Pb-Pt and Pb-Mg are lower than the value of 1.0; in particular the activity coefficients of Sn in the alloy Sn-Pd is extremely low. The activity coefficients of Pb in the alloys Pb-Cd and Pb-Cu are higher than 1.0.The movement of volatilization to higher effective temperatures in the atomization were studied; it was found that: 1) Where the activity coefficient of the analyte was lower than 1.0, intermetallic compounds were formed and the atomization shifted to higher temperatures. 2) Atomization was not altered (even though the activity coefficients were different from 1.0) if the modifier elements formed alloys with Pb, which had melting temperatures lower than the ashing and the initial temperatures of the atomization of Pb. 3) For metals such as Mg, which are neither reduced to metal nor form alloys with the analyte during the ashing and the atomization process, the role as matrix modifier is different, as has also been studied herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号