首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetogravitational instability of an infinite homogeneous, viscous, thermally conducting, rotating plasma flowing through a porous medium has been studied with the help of relevant linearized perturbation equations, using the method of normal mode analysis. Rotation is taken parallel and perpendicular to the magnetic field for both, the longitudinal and the transverse modes of propagation. The joint influence of the various parameters do not, essentially, change the Jeans' criterion but modifies the same. The adiabatic velocity of sound is being replaced by the isothermal one due to the thermal conductivity. Porosity reduces the effects of both, the magnetic field and the rotation, in the transverse mode of propagation, whereas the rotation is effective only along the magnetic field for an inviscid plasma. The viscosity removes the effect of rotation in the transverse mode of propagation.  相似文献   

2.
We study the acceleration of an ion flow in the electron layer formed by an electron flow moving in a transverse electric field and confined by the intrinsic magnetic field. The possibility of extraction of heavy ions with velocities lower than the ion sound velocity from the plasma, and the feasibility of their further acceleration by an external field is demonstrated.  相似文献   

3.
We have reported a theoretical study on the interaction mechanism between dust particles in the presence of asymmetric ion flow and an external magnetic field in complex plasma. The recent experimental and numerical results on the particle-wake interaction ensures the dominance of the wake effect in the subsonic regime of plasma flow using the cold ion approximation. The recent developments in dusty plasma research and its growing interest towards more realistic magnetized dusty plasma scenarios also demand serious attention to study the wake effect both in the sub and supersonic regimes in the presence of a magnetic field. It is a challenging task to develop a correct, quantitative theory of wake potential for different regimes of magnetic field and ion flow velocity. Analytic expressions for the wake potential have been reported in this paper for both subsonic and supersonic regimes in the presence of an external magnetic field along with Debye-Hückel type potentials. The results show that the wake potential plays a dominant role in the subsonic regime and its strength increases with an increase in magnetic field. The behaviour of the wake potential is found to have an interesting effect on the Coulomb crystallization of dust grains and is studied with the help of molecular dynamic (MD) simulation.  相似文献   

4.
为研究引流条对磁流体湍流的影响,采用自主开发的低磁雷诺数流固耦合磁流体相干结构模型大涡模拟求解器,对均匀磁场作用下平行层内带引流条导电矩形管和标准导电矩形管中液态金属湍流进行了数值模拟研究。结果表明,外加垂直流动方向的均匀磁场与流动的导电流体相互作用产生与流动方向相反的洛伦兹力,能够抑制磁流体的湍流脉动,这种抑制作用随着哈特曼数增大而增强。在弱导电率条件下,当Re=16350、Ha=212 时,两种管道中的流动均转换为层流流动状态。管道内壁面摩擦系数随着哈特曼数的增大而增大。引流条能在其近壁局部区域增强横向速度,有效激发湍流,但在弱壁面导电率条件下,带引流条导电矩形管壁面摩擦系数较标准矩形管大。  相似文献   

5.
The negative-mass (space-charge) instability is studied within the model of a flat thin electron beam moving along the stationary uniform magnetic field in the case of nonsymmetrical perturbations. It is shown that due to the phenomenon of "phase mixing" of electron bunches the instability increments are small for perturbations with spatial scales smaller than the Larmor diameter.  相似文献   

6.
Nonlinear propagation of longitudinal-transverse acoustic pulses down to a length of one cycle (video pulses) in a low-temperature paramagnetic crystal in the direction parallel to an external magnetic field is investigated theoretically. The case of a crystal with paramagnetic impurity ions with effective S=1/2 spin is considered. It is shown that, due to spin-phonon interaction, two-component acoustic pulses can propagate in the form of high-power quasi-solitons. Conditions are determined for the formation of exponentially localized subsonic rational solitons which propagate with a velocity higher than the velocity of transverse sound and which have a transverse component with a rotating plane of polarization.  相似文献   

7.
We study sound propagation in stationary and locally irrotational vortex flows where the circulation is wound around a long (rotating) cylinder, using Unruh’s formalism of acoustic space-times. Apart from the usual scattering solutions, we find anomalous modes which are bound to the vicinity of the cylinder and propagate along its axis—similar to whispering gallery modes. These modes exist for subsonic and supersonic flow velocities. In the supersonic case (corresponding to an effective ergoregion in the acoustic space-time), they can even have zero frequency ω = 0 and thus the associated quasiparticles with E = ?ω = 0 are easy to excite from an energetic point of view. Hence they should be relevant for the question of stability or instability of this setup.  相似文献   

8.
文章基于等离子体的Joule加热、静电力、Hall效应以及Lorentz加速度等固有特性,对等离子体在航空航天领域(不包括电推进和飞行器再入热防护方面)中的应用进行总结及评估.等离子体激励器在亚声速流到高超声速流的整个空气动力学领域及稀薄流领域,得到了广泛的应用.真正引人瞩目的是,与所控制的流场相比,应用中所加入的电磁力或能量仅仅与其扰动水平相当.因此,有效的流动控制往往就限制在像流动分离、流体动力学不稳定性、动态失速和涡破碎等动力学分岔问题中.有效的控制应用通常是利用有黏-无黏流相互作用的放大效应、外部磁场或微波能量的加入等来增强其控制效果.最后文章根据这些评估,对未来学科前沿提出了几点基础创新研究方向的建议.   相似文献   

9.
An elastic plate, set in an infinite baffle and immersed in a fluid moving with a uniform subsonic velocity, is excited by an acoustic source. The scattered sound field is analyzed when fluid-plate coupling is large, and a solution is found by the use of matched asymptotic expansions. The far field is found to approximate to the solution obtained when the elastic plate is absent. At a plate resonance, however, the outer field must include eigensolutions with singularities at the plate edges, and close to the plate the dominant terms are travelling plate waves. These plate waves are found to have a wavelength independent of the frequency of the source. It is also shown that a plate resonance corresponds to a divergence instability of aerodynamic flutter theory and that the stability results found in this paper are in agreement with those obtained by using modal expansions. The limit as the Mach number goes to zero is found to be singular, suggesting an analysis of the model for small flow velocity. This calculation is performed and the results match smoothly to the respective solutions for a stationary fluid and for a large subsonic flow.  相似文献   

10.
It is shown that stationary turbulence consisting of an ensemble of small amplitude lower hybrid wave packets becomes unstable against adiabatic perturbations along the external magnetic field. The growth rate and the threshold of the instability are calculated.  相似文献   

11.
本文在研究哨声波调制不稳定性时,除考虑由有质动力引起的密度变化和流速改变两个非线性效应外,还计及由弱相对论效应引起电子质量变化的非线性效应,得到了在形成孤子的条件、产生不稳定性的条件、和不稳定性增长率等方面与非相对论情况不同的结果。  相似文献   

12.
This paper is concerned with establishing the conditions of static stability of a simply supported tube conveying a compressible fluid by application of Euler's method of equilibrium. Timoshenko beam theory is used to describe the tube motion whiler Euler's equations of motion govern the compressible flow through the tube. The eigenvalue problem associated with the linearized equations of motion first derived by Niordson is solved by using Muller's method. The effects on critical velocity of fluid sound speed, tube shear, and tube aspect ratio are parametrically studied. When the flow is subsonic, the aspect ratio increases the critical velocity predicted by the theory while increased aspect ratio decreases the critical velocity when the flow is supersonic. Reduced sound speed and tube shear modulus always reflect a reduced critical velocity for the onset of tube buckling or divergence instability.  相似文献   

13.
The gravitational instability of a two component plasma is studied to include the simultaneous effects of collisions, gyroviscosity, finite conductivity, viscosity and porosity of the medium within the framework of two-fluid theory. From linearized equations of the system, using normal mode analysis, the dispersion relations for parallel and perpendicular directions to the magnetic field are derived and discussed. For longitudinal wave propagation it is found that the value of critical JEANS' wave number increases with increasing density and decreasing temperature of the neutral component. For transverse wave propagation the value of critical JEANS' wave number depends on gyroviscosity, ALFVÉN number, ratio of sonic speeds and densities of the two component and porosity of the medium. It is observed that the effect of magnetic field and porosity is suppressed by finite condutivity of the plasma and similarly the effect of gyroviscosity is removed by viscosity from JEANS' expression of instability. For both the directions instability is produced when the velocity perturbations are considered parallel to wave vector. The damping effect is produced due to collisional frequency, permeability of the porous medium and viscosity. The density of the neutral component and porosity of the medium tends to destabilize the system while an increased value of FLR corrections leads the system towards stabilization.  相似文献   

14.
The acoustical behavior and the flow in a rectangular lined channel with grazing flow have been investigated. The liner consists of a ceramic structure of parallel square channels and is locally reacting. In the absence of flow, the liner has a classical behavior: the acoustic transmission coefficient has a minimum at the resonance frequency of the resonators. When the Mach number of the grazing flow increases, the material behavior becomes unclassical in the sense that its acoustic transmission increases strongly around the resonance frequency. To connect this behavior with flow features, the flow itself in the vicinity of a liner has been measured by means of laser velocimetry. Periodic structures have been observed along the liner that are phase-locked with the incident sound wave. The axial and transverse velocity of these structures bear the typical features of an instability. In particular, the wavelength, convection speed, and growth rate are given. This is the first time that an aeroacoustic instability resulting from the interaction of flow and sound over a liner is measured.  相似文献   

15.
The temperature dependences of the electromagnetic-acoustic transformation (EMAT) efficiency and the velocity of transverse sound for the erbium rare-earth metal with three complex magnetic structures are experimentally investigated at different external constant magnetic fields. An intensive generation and anomalies in the velocity of transverse sound are revealed in the temperature range of the magnetic phase transitions. It is found that an increase in the magnetic field leads to an increase in the sound generation efficiency and a decrease in the anomalies in the velocity of sound. The relationships for the efficiency of transverse-sound generation through the magnetoelastic mechanism are theoretically derived for two magnetic structures of erbium. It is demonstrated that an increase in the EMAT efficiency in the phase transition range is associated with the specific features in the static and dynamic magnetic susceptibilities of erbium.  相似文献   

16.
It is well established that fluid flow can have significant effects on structural acoustic behavior, as is the fact that induced coupling between discrete modes of vibration becomes significant as flow velocity increases. To date, work in this area has been confined to subsonic flows, with the effects on sound radiation efficiency and sound power radiation quantified and compared for various subsonic flow speeds. The purpose of this work is to study the effects that supersonic flow has on these structural acoustic phenomena, along with an investigation of the uncoupled behavior of single modes in the transonic region. Theoretical development of the equations governing the vibration of a simply supported plate in an infinite baffle and an aerodynamic system that models a semi infinite flowing medium along with the method for coupling these systems is included. Computational results are presented illustrating the behavior of the uncoupled modes in the transonic region and the uncoupled and coupled effects on the structural response and sound power radiation as well as a study of the radiation efficiency of the coupled system.  相似文献   

17.
The effects of suspended particles and the finite thermal and electrical conductivities on the magnetogravitational instability of an ionized rotating plasma through a porous medium have been investigated, under varying assumptions of the rotational axis and the modes of propagation. In all the cases it is observed that the Jeans' criterion determines the condition of instability with some modifications due to various parameters. The effects of rotation, the medium porosity, and the mass concentration of the suspended particles on instability condition have been removed by (1) magnetic field for longitudinal mode of propagation with perpendicular rotational axis, and (2) viscosity for transverse propagation with rotational axis parallel to the magnetic field. The mass concentration reduces the effects of rotation. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one, whereas the effect of the finite electrical conductivity is to delink the alignment between the magnetic field and the plasma. Porosity reduces the effects of both the magnetic field and the rotation, on Jeans' criterion.  相似文献   

18.
The ion poloidal rotation and heat conductivity in collisional plasmas of axially-symmetric tokamaks with elongated cross-sections and with subsonic toroidal plasma flows are considered. It is shown that subsonic toroidal plasma flows, induced by neutral beam injection or radio frequency waves, can strongly affect the poloidal plasma velocity and ion heat conductivity in collisional plasmas of tokamaks. The transport coefficients also depend on the tokamak ellipticity parameter which, in combination with the Mach number, allows to operate transport processes at smaller values of the toroidal Mach number. The importance of taking into account the ion-electron heat exchange and electron temperature toroidal perturbations to find ion temperature toroidal perturbations is demonstrated. This work was partially supported by the State University of Rio de Janeiro (UERJ) and the Rio de Janeiro Research Foundation (FAPERJ).  相似文献   

19.
An unsteady lifting-surface theory for a rotating subsonic annular cascade has been developed to predict the unsteady blade forces and the acoustic power generation caused by interaction of blades with inlet distortions or wakes. Disturbance pressure and velocity fields induced by the rotor blades with fluctuating blade force are expressed in terms of the blade force distribution and kernel functions. The spanwise distribution of the blade force is given as a sum of blade force modes, and the kernel functions are resolved into the corresponding modal components. The sound pressure and intensity are expressed as a sum of acoustic modes, the modal components of which are given in terms of the blade force mode components.Numerical computations have been conducted .for interaction with the external disturbance flows that are sinusoidal in the circumferential direction, but possess a phase skewing in the radial direction. Correlations among the acoustic modes, the blade force modes and the flow patterns of the external disturbance have been investigated. When the predominant acoustic mode is subresonant, the blade force amplitude is reduced by the three-dimensional effect, which is lessened as the frequency increases. At deeply superresonant states, however, the three-dimensional effect upon the spanwise average of the blade force amplitude is small. The generated sound power is effectively reduced by increasing the radial non-uniformity of the external disturbance.  相似文献   

20.
为了研究高速动态气流中的电子束等离子体特性,建立了一个由蒙特卡罗模型、多组分等离子体模型与计算流体力学模型组成的多阶段耦合数值模型,在临近声速气流条件下,对1.33×104 Pa空气电子束等离子体特性进行了研究。结果表明,电子束能量沉积具有极强的空间不均性,电子束激发下的风洞流场呈现不同的性质,亚声速流场下游边界区密度减小,而在超声速流场中可诱发弱激波;相比于静止气体,在动态气流中等离子体密度下降,且存在额外的输运行为,使其向气流下游输运,但在临近声速条件下,气流速度大小对气流下游等离子体分布的影响不大;电子束入射角对等离子体空间分布和大小均有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号