首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let ${\mathbb{G}}Let \mathbbG{\mathbb{G}} be a Carnot group of step r and m generators and homogeneous dimension Q. Let \mathbbFm,r{\mathbb{F}_{m,r}} denote the free Lie group of step r and m generators. Let also p:\mathbbFm,r?\mathbbG{\pi:\mathbb{F}_{m,r}\to\mathbb{G}} be a lifting map. We show that any horizontally convex function u on \mathbbG{\mathbb{G}} lifts to a horizontally convex function u°p{u\circ \pi} on \mathbbFm,r{\mathbb{F}_{m,r}} (with respect to a suitable horizontal frame on \mathbbFm,r{\mathbb{F}_{m,r}}). One of the main aims of the paper is to exhibit an example of a sub-Laplacian L=?j=1m Xj2{\mathcal{L}=\sum_{j=1}^m X_j^2} on a Carnot group of step two such that the relevant L{\mathcal{L}}-gauge function d (i.e., d 2-Q is the fundamental solution for L{\mathcal{L}}) is not h-convex with respect to the horizontal frame {X 1, . . . , X m }. This gives a negative answer to a question posed in Danielli et al. (Commun. Anal. Geom. 11 (2003), 263–341).  相似文献   

2.
Every compact smooth manifold M is diffeomorphic to the set X(\mathbbR){X(\mathbb{R})} of real points of a nonsingular projective real algebraic variety X, which is called an algebraic model of M. Each algebraic cycle of codimension k on the complex variety X\mathbbC=X×\mathbbR\mathbbC{X_{\mathbb{C}}=X\times_{\mathbb{R}}\mathbb{C}} determines a cohomology class in H2k(X(\mathbbR);\mathbbD){H^{2k}(X(\mathbb{R});\mathbb{D})} , where \mathbbD{\mathbb{D}} denotes \mathbbZ{\mathbb{Z}} or \mathbbQ{\mathbb{Q}} . We investigate the behavior of such cohomology classes as X runs through the class of algebraic models of M.  相似文献   

3.
We show that for any sufficiently homogeneous metrizable compactum X there is a Polish group G acting continuously on the space of rational numbers such that X is its unique G-compactification. This allows us to answer Problem 995 in the ‘Open Problems in Topology II’ book in the negative: there is a one-dimensional Polish group G acting transitively on for which the Hilbert cube is its unique G-completion.   相似文献   

4.
We prove that for a compact subgroup H of a locally compact almost connected group G, the following properties are mutually equivalent: (1) H is a maximal compact subgroup of G, (2) the coset space G/H is \mathbbQ{\mathbb{Q}} -acyclic and \mathbbZ/2\mathbbZ{\mathbb{Z}/2\mathbb{Z}} -acyclic in Čech cohomology, (3) G/H is contractible, (4) G/H is homeomorphic to a Euclidean space, (5) G/H is an absolute extensor for paracompact spaces, (6) G/H is a G-equivariant absolute extensor for paracompact proper G-spaces having a paracompact orbit space.  相似文献   

5.
A variety ${\mathbb{V}}${\mathbb{V}} is var-relatively universal if it contains a subvariety \mathbbW{\mathbb{W}} such that the class of all homomorphisms that do not factorize through any algebra in \mathbbW{\mathbb{W}} is algebraically universal. And \mathbbV{\mathbb{V}} has an algebraically universal α-expansion a\mathbbV{\alpha\mathbb{V}} if adding α nullary operations to all algebras in \mathbbV{\mathbb{V}} gives rise to a class a\mathbbV{\alpha\mathbb{V}} of algebras that is algebraically universal. The first two authors have conjectured that any varrelative universal variety \mathbbV{\mathbb{V}} has an algebraically universal α-expansion a\mathbbV{\alpha\mathbb{V}} . This note contains a more general result that proves this conjecture.  相似文献   

6.
A finite group G all of whose nonlinear irreducible characters are rational is called a \mathbbQ1{\mathbb{Q}_1}-group. In this paper, we obtain some results concerning the structure of \mathbbQ1{\mathbb{Q}_1}-groups.  相似文献   

7.
Carlson and Toledo conjectured that if an infinite group Γ is the fundamental group of a compact K?hler manifold, then virtually H2(G, \mathbb R) 1 0{H^{2}(\Gamma, {\mathbb R}) \ne 0} . We assume that Γ admits an unbounded reductive rigid linear representation. This representation necessarily comes from a complex variation of Hodge structure ( \mathbbC{\mathbb{C}} -VHS) on the K?hler manifold. We prove the conjecture under some assumption on the \mathbbC{\mathbb{C}} -VHS. We also study some related geometric/topological properties of period domains associated to such a \mathbbC{\mathbb{C}} -VHS.  相似文献   

8.
Let ${\mathbb{A}}Let \mathbbA{\mathbb{A}} be a universal algebra of signature Ω, and let I{\mathcal{I}} be an ideal in the Boolean algebra P\mathbbA{\mathcal{P}_{\mathbb{A}}} of all subsets of \mathbbA{\mathbb{A}} . We say that I{\mathcal{I}} is an Ω-ideal if I{\mathcal{I}} contains all finite subsets of \mathbbA{\mathbb{A}} and f(An) ? I{f(A^{n}) \in \mathcal{I}} for every n-ary operation f ? W{f \in \Omega} and every A ? I{A \in \mathcal{I}} . We prove that there are 22à0{2^{2^{\aleph_0}}} Ω-ideals in P\mathbbA{\mathcal{P}_{\mathbb{A}}} provided that \mathbbA{\mathbb{A}} is countably infinite and Ω is countable.  相似文献   

9.
Mestre has shown that if a hyperelliptic curve C of even genus is defined over a subfield k ì \mathbbC{k \subset \mathbb{C}} then C can be hyperelliptically defined over the same field k. In this paper, for all genera g > 1, g o 1{g\equiv1} mod 4, hence odd, we construct an explicit hyperelliptic curve defined over \mathbbQ{\mathbb{Q}} which can not be hyperelliptically defined over \mathbbQ{\mathbb{Q}}.  相似文献   

10.
Let ${\mathcal{E}}Let E{\mathcal{E}} be an elliptic curve defined over \mathbbQ{\mathbb{Q}} . Let P ? E(\mathbb Q){P\in {\mathcal{E}}(\mathbb {Q})} and let q be a positive integer. Assume that for almost all valuations v ? \mathbbQ{v\in \mathbb{Q}} , there exist points Dv ? E(\mathbb Qv){D_v\in {\mathcal{E}}(\mathbb {Q}_v)} such that P = qD v . Is it possible to conclude that there exists a point D ? E(\mathbb Q){D\in {\mathcal{E}}(\mathbb {Q})} such that P = qD? A full answer to this question is known when q is a power of almost all primes p ? \mathbbN{p\in \mathbb{N}} , but some cases remain open when p ? S={2,3,5,7,11,13,17,19,37,43,67,163}{p\in S=\{2,3,5,7,11,13,17,19,37,43,67,163\}} . We now give a complete answer in the case when q = 4.  相似文献   

11.
For an equivariant Morse stratification that contains a unique open stratum, we introduce the notion of equivariant antiperfection, which means the difference of the equivariant Morse series and the equivariant Poincaré series achieves the maximal possible value (instead of the minimal possible value 0 in the equivariantly perfect case). We also introduce a weaker condition of local equivariant antiperfection. We prove that the Morse stratification of the Yang-Mills functional on the space of connections on a principal G-bundle over a connected, closed, nonorientable surface Σ is locally equivariantly \mathbbQ{\mathbb{Q}}-antiperfect when G = U(2), SU(2), U(3), SU(3); we propose that the Morse stratification is actually equivariantly \mathbbQ{\mathbb{Q}}-antiperfect in these cases. Our proposal yields formulas of Poincaré series PtG(Hom(p1(S),G);\mathbbQ){P_t^G({\rm Hom}(\pi_1(\Sigma),G);\mathbb{Q})} when G = U(2), SU(2), U(3), SU(3). Our U(2), SU(2) formulas agree with formulas proved by T. Baird, who also verified our conjectural U(3) formula.  相似文献   

12.
For Archimedean vector lattices X, Y and the positive cone \mathbbL{\mathbb{L}} of all regular linear operators L : XY, a theory of sequential convergences of functions connected with an \mathbbL{\mathbb{L}} -valued measure is introduced and investigated.  相似文献   

13.
We prove that the only compact surfaces of positive constant Gaussian curvature in \mathbbH2×\mathbbR{\mathbb{H}^{2}\times\mathbb{R}} (resp. positive constant Gaussian curvature greater than 1 in \mathbbS2×\mathbbR{\mathbb{S}^{2}\times\mathbb{R}}) whose boundary Γ is contained in a slice of the ambient space and such that the surface intersects this slice at a constant angle along Γ, are the pieces of a rotational complete surface. We also obtain some area estimates for surfaces of positive constant Gaussian curvature in \mathbbH2×\mathbbR{\mathbb{H}^{2}\times\mathbb{R}} and positive constant Gaussian curvature greater than 1 in \mathbbS2×\mathbbR{\mathbb{S}^{2}\times\mathbb{R}} whose boundary is contained in a slice of the ambient space. These estimates are optimal in the sense that if the bounds are attained, the surface is again a piece of a rotational complete surface.  相似文献   

14.
We describe the dynamics of an arbitrary affine dynamical system on a local field by exhibiting all its minimal subsystems. In the special case of the field \mathbbQp{\mathbb{Q}_p} of p-adic numbers, for any non-trivial affine dynamical system, we prove that the field \mathbbQp{\mathbb{Q}_p} is decomposed into a countable number of invariant balls or spheres each of which consists of a finite number of minimal subsets. Consequently, we give a complete classification of topological conjugacy for non-trivial affine dynamics on \mathbbQp{\mathbb{Q}_p} . For each given prime p, there is a finite number of conjugacy classes.  相似文献   

15.
Let \mathbb GL(2, \mathbbH){{\mathbb G}L(2, \mathbb{H})} be the group of invertible 2 × 2 matrices over the division algebra \mathbbH{\mathbb{H}} of quaternions. \mathbb GL(2, \mathbbH){{\mathbb G}L(2, \mathbb{H})} acts on the hyperbolic 5-space as the group of orientation-preserving isometries. Using this action we give an algebraic characterization of the orientation-preserving isometries of the hyperbolic 5-space. Along the way we also determine the conjugacy classes and the conjugacy classes of centralizers or the z-classes in \mathbb GL(2, \mathbbH){{\mathbb G}L(2, \mathbb{H})} .  相似文献   

16.
We show the existence and uniqueness of the (asymptotically) almost periodic solution to parabolic evolution equations with inhomogeneous boundary values on \mathbbR{\mathbb{R}} and \mathbbR±\mathbb{R}_{\pm}, if the data are (asymptotically) almost periodic. We assume that the underlying homogeneous problem satisfies the ‘Acquistapace–Terreni’ conditions and has an exponential dichotomy. If there is an exponential dichotomy only on half intervals ( − ∞, − T] and [T, ∞), then we obtain a Fredholm alternative of the equation on \mathbbR{\mathbb{R}} in the space of functions being asymptotically almost periodic on \mathbbR+{\mathbb{R}}_{+} and \mathbbR-\mathbb{R}_{-}.  相似文献   

17.
Let E be an elliptic curve defined over \mathbbQ{\mathbb{Q}}. Let Γ be a subgroup of rank r of the group of rational points E(\mathbbQ){E(\mathbb{Q})} of E. For any prime p of good reduction, let [`(G)]{\bar{\Gamma}} be the reduction of Γ modulo p. Under certain standard assumptions, we prove that for almost all primes p (i.e. for a set of primes of density one), we have
|[`(G)]| 3 \fracpf(p),|\bar{\Gamma}| \geq \frac{p}{f(p)},  相似文献   

18.
If ${\mathcal{L} = {\sum_{j=1}^m} {X_j^2} + X_0}If L = ?j=1m Xj2 + X0{\mathcal{L} = {\sum_{j=1}^m} {X_j^2} + X_0} is a H?rmander partial differential operator in \mathbbRN{\mathbb{R}^N}, we give sufficient conditions on the vector fields X j ’s for the existence of a Lie group structure \mathbbG = (\mathbbRN, *){\mathbb{G} = (\mathbb{R}^N, *)} (and we exhibit its construction), not necessarily nilpotent nor homogeneous, such that L{\mathcal{L}} is left invariant on \mathbbG{\mathbb{G}}. The main tool is a formula of Baker-Campbell-Dynkin-Hausdorff type for the ODE’s naturally related to the system of vector fields {X 0, . . . , X m }. We provide a direct proof of this formula in the ODE’s context (which seems to be missing in literature), without invoking any result of Lie group theory, nor the abstract algebraic machinery usually involved in formulas of Baker-Campbell-Dynkin-Hausdorff type. Examples of operators to which our results apply are also furnished.  相似文献   

19.
The field of quaternions, denoted by \mathbbH{\mathbb{H}} can be represented as an isomorphic four dimensional subspace of \mathbbR4×4{\mathbb{R}^{4\times 4}}, the space of real matrices with four rows and columns. In addition to the quaternions there is another four dimensional subspace in \mathbbR4×4{\mathbb{R}^{4\times 4}} which is also a field and which has – in connection with the quaternions – many pleasant properties. This field is called field of pseudoquaternions. It exists in \mathbbR4×4{\mathbb{R}^{4\times 4}} but not in \mathbbH{\mathbb{H}}. It allows to write the quaternionic linear term axb in matrix form as Mx where x is the same as the quaternion x only written as a column vector in \mathbbR4{\mathbb{R}^4}. And M is the product of the matrix associated with the quaternion a with the matrix associated with the pseudoquaternion b.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号