首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is part of an effort to assess the level of background radiation for Erzincan Province of eastern Turkey. Radionuclide activity concentrations in soil samples were measured through gamma-ray spectrometry and the average activities were determined as 8.93, 11.39, 281.94, and 9.52 Bq/kg for the radionuclides 238U, 232Th, 40K, and 137Cs, respectively. The average annual effective dose from these natural radioactivity sources (238U series, 232Th series and 40K,) was calculated to be 27.9 μSv. Radioactivity levels in drinking and potable water samples were studied using a multi-channel low level proportional counter. The average gross alpha activity concentration was found to be 0.0477 Bq/L (min. 0.007 Bq/L; max. 0.421 Bq/L) and the average gross beta activity was measured as 0.104 Bq/L (min. 0.008 Bq/L; max. 1.806 Bq/L). These values lead to an average annual effective dose of 9.75 μSv from the alpha emitters and 56.34 μSv from the beta emitting radionuclides in water. The radioactivity levels in the water samples investigated were found to comply with the reference levels recommended by WHO and the regulations set forth by the Turkish Health Ministry.  相似文献   

2.
This study presents the high purity germanium (HPGe) gamma spectrometric measurement of natural radioactivity mainly due to 226Ra, 232Th and 40K in soil samples collected in Ferozepur and Faridkot district of Punjab, India. 226Ra activity varied from 28.6 to 51.1 Bq kg−1 with the mean of 39.7 Bq kg−1. The range and mean activity of 232Th were 42.9–73.2 and 58.2 Bq kg−1, respectively. 40K activity was in the range of 470.9–754.9 Bq kg−1 with the mean of 595.2 Bq kg−1. The air kerma rate (AKR) at 1 m height from the ground was also measured using gamma survey meter in all the sampling locations, which was ranging from 92.1 to 122.8 nGy h−1 with the mean of 110.6 nGy h−1. The radiological parameters such as Raeq and activity index of the soil samples were also evaluated, which are the tools to assess the external radiation hazard due to building materials. The mean and range of the Raeq values were 168.7 and 132.9–210.4 Bq kg−1, respectively, whereas the activity index varied from 0.5 to 0.8 with the mean value of 0.62. These indices show that the indoor external dose due to natural radioactivity in the soil used for the construction will not exceed the dose criteria. The AKR was also evaluated from soil activity concentration and altitude correction of cosmic radiation contribution. The statistical tests such as Pearson correlation, spearman rank correlation, box and whisker plot, the Wilcoxon/Mann–Whitney test and chi-square test, were used to compare the measured AKR with evaluated AKR, which indicates good correlation.  相似文献   

3.
The paper presents and discusses radon activity concentrations in Cypriot groundwater systems as a function of the background lithology and seasonal/meteorological conditions using an airborne radon monitoring system (ARM) after separation of radon by out-gassing. Radiometric analysis of groundwater samples obtained from non-contaminated systems showed that radon concentration in groundwaters varies strongly (0.1–10 Bq L−1) depending mainly on the hosting geological matrix but also to lesser degree on atmospheric/meteorological conditions. The associated excess annual dose has been estimated to range between 10−6 and 10−4 mSv y−1, which is an insignificant contribution to the radiation exposure of the Cypriot population caused by airborne radon (0.5 ± 0.4 mSv y−1).  相似文献   

4.
The methodology for the rapid determination of 89,90Sr in wide range of activity concentration is given. Methodology is based on simultaneous separation of strontium and yttrium from samples by mixed solvent anion exchange chromatography, mutual separation of 89,90Sr from 90Y by hydroxide precipitation and quantitative 89,90Sr determination by Cherenkov counting within 3 days. It is shown that Y and Sr can be efficiently separated from alkaline, alkaline earth and transition elements as well as from lanthanides and actinides on the column filed by strong base anion exchanger in nitrate form and 0.25 M HNO3 in mixture of ethanol and methanol as eluent. Decontamination factor for Ba, La and other examined elements except calcium is low and can not affect quantitative determination in predictable circumstances. Methodology for quantitative determination by Cherenkov counting based on following the changes of sample activity over time is described and discussed. It has been shown that 89,90Sr can be determined with acceptable accuracy when 89Sr/90Sr ratio is over 10:1 and that separation of Y enables reliable determination of 89Sr and 90Sr in wide range of 89Sr/90Sr ratios (60:1) and in some cases in presence of other yttrium and strontium isotopes. The methodology was tested by determination of 89,90Sr in Analytics crosscheck samples (nuclear waste sample) and ERA proficiency testing samples (low level activity samples). Obtained results shows that by using of low level liquid scintillation counter it can be possible to determine 89Sr and 90Sr in wide range of concentration activity (1–1,000 Bq/L/kg) with uncertainty below 10% within 2–3 days. Results also show that accuracy of determination of 89Sr (and 90Sr) strongly depends on the determination of difference between separation and counting time when activity ratio of 89Sr/90Sr is high. Examination the influence of media and vial type on background radiation and counting efficiency has shown that lowest limit of determination can be obtained by using of HNO3 in plastic vials as counting media, because in this combination figure of merit is maximized. For the recovery of 50% and 100 min of counting time estimated MDA is 55 Bq and 90 Bq for 90Sr and 89Sr, respectively. Analysis of combined uncertainty shows that it mainly depends on uncertainty of efficiency and recovery determination, uncertainty of activities determination for both isotopes and level of background radiation.  相似文献   

5.
232Th activities in the South Adriatic Sea-water, surface sediment, mud with detritus, seagrass (Posidonia oceanica) samples, and the mullet (Mugilidae) species Mugil cephalus, as well as soil and sand from the Montenegrin Coast, were measured using the six-crystal spectrometer PRIPYAT-2M, which has relatively high detection efficiency and a good sensitivity, and allows a short acquisition time, and measuring samples of any shape, without preliminary preparation and calibration measurements for different sample geometries. An average 232Th activity concentration in surface soil layer is found to be 40.33 Bq kg−1, while in sand—4.7 Bq kg−1. The absorbed dose rate in air due to 232Th gamma radiation from surface soil layer ranged from 11.76 to 63.39 nGy h−1, with a mean of 24.06 nGy h−1. Corresponding average annual effective dose rate has been found to be 0.03 mSv y−1. The absorbed dose rates due to the thorium gamma radiation in air at 1 m above sand surface on the Montenegrin beaches have been found to be from 0.41 to 9.08 nGy h−1, while annual effective dose rates ranged from 0.0005 to 0.011 mSv y−1. 232Th activity concentration in seawater ranged from 0.06 to 0.22 Bq L−1, as in the mullet (Mugil cephalus) whole individuals from 0.63 to 1.67 Bq kg−1. Annual intake of 232Th by human consumers of this fish species has been estimated to provide an effective dose of about 0.003 mSv y−1.  相似文献   

6.
The efficacy of gamma radiation decontamination of industrial casein, a milk protein utilized as a component of many food and non-food products has been studied. Low-fat milk powder was also included with a purpose to study the microflora survival in protein-rich materials. Microbial analysis of the samples prior to irradiation showed that the initial total viable count was higher than 6.0 log cfu g−1 in both casein and milk powders. The contamination of casein with moulds and yeasts was found to be equal to 3.56 log cfu g−1. The counts of coliforms have not exceeded the value of 2.48 log cfu g−1. Radiation processing of casein and milk powder has substantially reduced the microbial population of all samples. The dose of 5 kGy was sufficient to reduce the total microflora and coliforms counts to the level permitted for food products. Survivals of microorganisms were analyzed by the generalized exponential equation, SF=exp[−D/Do)α]. Values of an exponent, α, standing for the dispersion parameter, were equal to 0.65 and 0.70 for microorganisms contaminating casein and milk powders, respectively. The numerical value of the dispersion parameter α<1 indicates the concave dependence of a logarithm of surviving fraction versus radiation dose. No difference in microflora survival in irradiated samples tested immediately and in samples stored for 1-month after irradiation has been noticed.  相似文献   

7.
Radioactivity levels in soil samples, collected from mid Rechna interfluvial region, Pakistan have been estimated by using gamma ray spectrometric technique. 226Ra, 232Th, the primordial radionuclide 40K and the artificial radionuclide 137Cs have been measured in the soil of the study area. The mean radioactivity levels of 226Ra, 232Th, 40K and 137Cs were found to be 49.0 ± 1.6, 62.4 ± 3.2, 670.6 ± 33.9 and 3.5 ± 0.4 Bq kg−1 respectively. The mean radium equivalent activity (Raeq), outdoor radiation hazard index (H out), indoor radiation hazard index (H in) and terrestrial absorbed dose rate for the area under study were determined as 189.9 ± 8.8 Bq kg−1, 0.51, 0.65 and 70.1 nGy h−1 respectively. The annual effective dose to the public was estimated to be 0.43 mSv. The measured values are comparable with other global radioactivity measurements and are found to be safe for public and environment.  相似文献   

8.
Polytetrafluoroethylene (PTFE) was grafted (g) with acrylic acid (AAc) by γ-ray pre-irradiation method to get PTFE-g-AAc films, then N-isopropylacrylamide (NIPAAm) was grafted onto PTFE-g-AAc films with γ-ray to get (PTFE-g-AAc)-g-NIPAAm. PTFE films were irradiated in air at a dose rate of 3.0 kGy h–1 and different radiation dose. The irradiated films were placed in glass ampoules, which contained aqueous solutions with different monomer concentration (AAc), and then they were heated at different temperatures and reaction time. NIPAAm onto PTFE-g-AAc was carried out with the same procedure with monomer concentration of 1 mol L−1. The thermosensitivity of the samples was defined and calculated as the ratio of the grafted samples swelling at 28 and 35 °C, and pH sensitivity defined as the ratio of the grafted samples swelling at pH 2 and 8.  相似文献   

9.
Radon and its progenies in indoor environment have been identified as the main sources of radiation dose to the people from natural radioactive sources. Presence of radon in drinking water causes radiation related health hazards both through inhalation and ingestion. In this study 36 drinking water samples from taps, boreholes and deep tube wells within the Main Campus of the University of Peshawar and adjoining area were analyzed with RAD7 electronic device for radon content determination. These water samples have a mean, maximum and minimum radon value of 8.8 ± 0.8, 18.2 ± 1.0, and 1.6 ± 0.3 Bq L−1, respectively. Eleven drinking water samples analyzed have radon levels in excess of the EPA recommended maximum contaminant level (MCL) of 11.1 Bq L−1. These include 89% from tube wells, 8% from tap water, and 50% from shallow boreholes. Radon levels of about 31% of the total samples used by the inhabitants of the study area are higher than the EPA advised level of 11.1 Bq L−1. The annual effective dose from radon in water due to its ingestion and inhalation per individual has also been estimated. The mean radon concentration and mean annual effective dose due to radon in water of this study have been compared with the mean radon concentration and mean annual effective dose of earlier investigators due to radon in water from different localities of India and Pakistan. The mean annual effective doses of all the samples are lower than the reference level of 0.1 mSv a−1 for drinking water of WHO and EU Council. It has been concluded that drinking water of the study area is generally safe as far as radon related health hazards are concerned with the exception of a few isolated cases. It has been found that radon levels within the region have a positive correlation with depth of the water sources.  相似文献   

10.
《印度化学会志》2023,100(1):100856
The present work aims to measure and estimate radioactivity and hazardous radiation indices of the soil. Soil samples were collected from various locations in the Visakhapatnam district in Andhra Pradesh, India. The measurement of specific activity of 226Ra, 232Th, and 40K radionuclides is carried out with the help of HP-Ge based gamma spectrometer system. Activity concentration of radionuclides in the samples 226Ra, 232Th and 40K ranged from 20 ± 2 to 91 ± 2 Bq.kg-1, 45 ± 3 to 365 ± 3 Bq.kg-1, and 400 ± 9 to 607 ± 8 Bq.kg-1, and the respective mean values are 53.36 Bq.kg-1, 203.74 Bq.kg-1 and 479.19 Bq.kg-1. The measured mean value of the absorbed dose rate is 171.41 nGy.h-1, which was beyond the worldwide mean outdoor value of 60 nGy.h-1. Thus, the annual effective dose estimated from the above value is 1.04 mSv.y-1. The correlation was done among the measured 226Ra, 232Th, and 40K activity concentrations. The estimated radium equivalent dose is 381.60Bq.kg-1. The estimated health hazard index and annual effective dose rates of dwellers of Visakhapatnam were studied and compared to Indian average values. The study will help to generate the baseline data for assessing hazard indices to the public and geological mapping of natural radiation in India.  相似文献   

11.
In this study, 90Sr (540 keVβ ), 129I (150 keVβ ) and the gross beta radioactivity concentrations were determined for the samples of tea as the most leading consumed hot drink in the markets (processed and packaged for sale) in our country. Furthermore, the obtained data were statistically analyzed. For determination of 129I (150 keVβ), 90Sr (540 keVβ) and gross radioactivity concentrations in tea samples, a sensor system consisting of scintillation detector with BP4 probe sensitive to beta radiation and a radiation meter (ST7) configurable for windows at desired power was used.  相似文献   

12.
Tissue equivalent radiochromic gel material containing ferrous ions, xylenol-orange ion indicator and gelatin as gelling agent (FXG) is known to be sensitive to γ- and X-rays; hence it has been used for ionizing radiation dosimetry. Changes in optical absorbance properties of FXG material over a wide region in the visible spectrum were found to be proportional to the radiation absorbed dose. An earlier study demonstrated the sensitivity of FXG gel detector to ultraviolet radiation and therefore that could give quantitative measure for UV exposure. This study focuses on the detection of UVA radiation (315–400 nm), which forms an important part (~97%) of the natural solar UV radiation reaching the earth surface. A solar UV simulator device was used to deliver UVA radiation to FXG samples. The beam was optically modified to irradiate gel samples at an exposure level about 58 W/m2, which is comparable to the summer natural UVA radiation measured outside the laboratory building at midday (~60 W/m2). Experimental results were used to generate mathematical second order formulas that give the relationship between UVA dose and optical absorbance changes observed at two wavelengths in the visible region of the spectrum—430 and 560 nm.  相似文献   

13.
Ultratrace gold (Au) in geogas samples has been determined by means of laser excited atomic fluorescence spectrometry combined with graphite electrothermal atomization and time-gate technique. Gold atoms were excited from the ground state to the 6p2P3/2 state by a pulsed laser beam with a wavelength of 242.8 nm. Fluorescence photons with a wavelength of 312.3 nm were measured by a photon-counting unit. The time-gate technique was used to reduce the background radiation caused by the furnace. This method has proved to be highly sensitive with minimal background interference. Eighty-two geogas samples were analysed and the Au contents obtained were in the range of 0.002–0.182 ng l−1. The study of Au concentration of geogas in soil is of great interest in prospecting gold deposits.  相似文献   

14.
A study was carried out to determine optimum decontamination dose for a locally manufactured coconut cream powder. Samples were gamma irradiated (0–15 kGy) and ageing process was achieved using GEER oven at 60 °C for 7 days, which is equivalent to one-year storage at room temperature. Iodine value (IV), ranging from 4.8 to 6.4, was not affected by radiation doses and storage, however peroxide value and thiobarbituric acid (TBA) generally increased with radiation doses. In most samples, peroxide value (meq/kg) reduced after storage, whilst the TBA (mg malonaldehyde/kg), indicator for product quality, slightly increased. The sensory evaluation conducted using 25 taste panellists indicated that scores on odour, creamy taste and overall acceptance for all irradiated samples at more than 5 kGy were significantly lower (P<0.05) than the control. However, the panellists could not detect any significant differences among the irradiation doses (P>0.05). All stored products were significantly different in colour, creamy taste, odour and overall acceptance (P<0.05) when compared to the non-stored non-irradiated control. Microbiological count of the samples prior to irradiation was in the range of 1×102–1.7×103 cfu/g with no detection of Salmonella sp. and Escherichia coli. No microbial colonies were detected after irradiation. Based on the TBA and overall sensory acceptance, gamma irradiation of 5 kGy was found to be the optimum dose and lower doses can be considered to decontaminate coconut cream powder.  相似文献   

15.
A rapid bioassay for 90Sr was developed involving preconcentration of 90Sr/90Y from human urine samples with a cation exchange polymer (poly–acrylamido–methyl–propanesulfonic acid) coated onto magnetic nanoparticles, followed by selective elution of 90Sr (over 90Y) with phosphate for determination by liquid scintillation analysis. The minimum detectable activity for this method (4.9 ± 0.5 Bq/L) is lower than the required sensitivity of 19 Bq/L for 90Sr in human urine samples, as defined in the requirements for radiation emergency bioassay techniques for the public and first responders based on the dose threshold for possible medical attention recommended by the International Commission on Radiological Protection. The relative bias was 9.2%, the relative precision was 3.2%, and the linear dynamic range covered 12–600 Bq/L. This simple and rapid bioassay method is found to be in compliance with the HPS ANSI N13.30 performance criteria for radiobioassay.  相似文献   

16.
In this paper, a method for the determination of four groups of endocrine-disrupting compounds in human hair is proposed. Target compounds were a plastic monomer (bisphenol A), three parabens commonly used as preservatives (methylparaben, ethylparaben and propylparaben), six perfluoroalkyl compounds commonly used as water, oil and dirt repellents (perfluorooctane sulfonic acid and five perfluoroalkyl carboxylic acids, with alkyl chains from four to eight carbon atoms) and a brominated flame retardant (hexabromocyclododecane). All of them are of especial concern to human health because they are utilized in many everyday products. The method is based on hair incubation with methanol/acetic acid solution (85:15, v/v), extraction with acetone for 15 min in an ultrasonic bath and analysis by liquid chromatography-electrospray-tandem mass spectrometry in negative ionization mode. Limits of quantification in hair samples ranged from 0.6 ng g−1 to 6.1 ng g−1, except for hexabromocyclododecane (36 ng g−1). Recoveries were higher than 69%. Intra-day and inter-day precision, expressed as relative standard deviation, were lower than 15% and 10%, respectively. The applicability of the method was proven by analyzing the target compounds in hair samples from six volunteers. High frequencies of detection and concentrations were obtained for bisphenol A (83% of samples; concentrations up to 158 ng g−1) and parabens (100% of samples; concentrations up to 624 ng g−1). Lower concentrations were detected for the perfluoroalkyl compounds (up to 13 ng g−1). Hexabromocyclododecane was not detected.  相似文献   

17.
This work describes the development of flow analysis microsystems with integrated fluorimetric detection cells. Channels (width of 300–540 μm and depth of 200–590 μm) were manufactured by deep-UV lithography in urethane–acrylate (UA) resin. Plastic optical fibers (diameter of 250 μm) were coupled to a 2.0-mm-long detection channel in order to guide the excitation radiation from an LED (470 nm) and collect the emitted radiation at a right angle towards a photomultiplier. A single-line miniaturized system, with a total internal volume of 10.4 μL, was evaluated by means of standard fluorescein solutions (0.53–2.66 μmol L−1, pH 8.5). The analytical signals presented a linear relationship in the concentration range studied, with a relative standard deviation of 1.9% (n = 5), providing a detection limit of 0.37 μmol L−1 and an analytical frequency of 60 samples/h, using a flow rate of 60 μL min−1. Optical microscopy images and videos acquired in real time for the hydrodynamic injection of 130 and 320 nL of sample solutions indicated the good performance of the proposed sampling strategy. Another microsystem with a total internal volume of 38 μL was developed, incorporating a confluence point for two solutions. This device was applied to the determination of the total concentration of Ca2+ and Mg2+ in commercial mineral waters using the calcein method. Microscopy images and videos demonstrated the mixing efficiency of the solutions in the microchannels. A linear relationship was observed for the analytical signal in the Ca2+ concentration range from 25 to 125 μmol L−1, with relative standard deviations of 3.5%. The analysis of mineral waters with the proposed system provided results that did not differ significantly from those obtained by the EDTA titration method at a confidence level of 95%. These results demonstrate the viability of developing micro flow injection systems with an integrated fluorimetric detection cell.   相似文献   

18.
X-ray fluorescence (XRF) is an attractive technique for nuclear forensics applications. We evaluated a handheld XRF device by applying an external radiation field (10 mR/h–17 R/h) using two types of radiography sources: a 60Co radiography camera for high-energy gamma emissions and an 192Ir radiography camera for several low-energy gamma (0.604, 0.468, and 0.317 MeV) and decay daughter X-ray emissions. External radiation tests proved that radiation, in general, has a significant effect on the dead time or background at dose rates over 1 R/h for both the 192Ir and 60Co sources.  相似文献   

19.
Quenchbody (Q-body) is a novel fluorescent biosensor based on the antigen-dependent removal of a quenching effect on a fluorophore attached to antibody domains. In order to develop a method using Q-body for the quantitative determination of deoxynivalenol (DON), a trichothecene mycotoxin produced by some Fusarium species, anti-DON Q-body was synthesized from the sequence information of a monoclonal antibody specific to DON. When the purified anti-DON Q-body was mixed with DON, a dose-dependent increase in the fluorescence intensity was observed and the detection range was between 0.0003 and 3 mg L−1. The coefficients of variation were 7.9% at 0.003 mg L−1, 5.0% at 0.03 mg L−1 and 13.7% at 0.3 mg L−1, respectively. The limit of detection was 0.006 mg L−1 for DON in wheat. The Q-body showed an antigen-dependent fluorescence enhancement even in the presence of wheat extracts. To validate the analytical method using Q-body, a spike-and-recovery experiment was performed using four spiked wheat samples. The recoveries were in the range of 94.9–100.2%. The concentrations of DON in twenty-one naturally contaminated wheat samples were quantitated by the Q-body method, LC-MS/MS and an immunochromatographic assay kit. The LC-MS/MS analysis showed that the levels of DON contamination in the samples were between 0.001 and 2.68 mg kg−1. The concentrations of DON quantitated by LC-MS/MS were more strongly correlated with those using the Q-body method (R2 = 0.9760) than the immunochromatographic assay kit (R2 = 0.8824). These data indicate that the Q-body system for the determination of DON in wheat samples was successfully developed and Q-body is expected to have a range of applications in the field of food safety.  相似文献   

20.
A new molecularly imprinted polymer (MIP) for trace analysis of diclofenac in environmental water samples was prepared by a non-covalent protocol in which diclofenac was used as a template molecule. Diclofenac is a member of the class of drugs termed non-steroidal anti-inflammatory drugs (NSAIDs) which belong to the most frequently detected pharmaceuticals in the water-cycle in Europe. The MIP was synthesized using 2-vinylpyridine (2-VP) and ethylene glycol dimethacrylate (EGDMA) as a functional monomer and cross-linker, respectively, and bulk thermal polymerization method. 1H NMR spectroscopy was used to study the interaction between diclofenac and 2-VP mixed in toluene-d8 in pre-polymerization complex. Two non-covalent bonds were formed i.e. ionic interaction and hydrogen bonding. The binding characteristics of the MIP and diclofenac were evaluated using equilibrium binding experiments. Scatchard plot analysis revealed that two classes of binding sites were formed with dissociation constants of 55.6 μmol L−1 and 1.43 mmol L−1, respectively. Various parameters affecting the extraction efficiency of the polymers have been evaluated to achieve the selective preconcentration of diclofenac from aqueous samples and to reduce non-specific interactions. This resulted in an MISPE-LC/DAD method allowing the direct extraction of the analyte from sample matrix with a selective wash using dichloromethane/acetonitrile (94:6, v/v) followed by elution with dichloromethane/methanol (85:15, v/v). The recovery of a 100 ng diclofenac standard spiked into 200 mL of blank surface water was 96%, with good precision (RSD = 3.3%, n = 3). The MISPE was demonstrated to be applicable to the analysis of diclofenac in raw influent and final effluent wastewater samples from sewage treatment plant and revealed diclofenac concentrations of 1.31 ± 0.055 μg L−1 (n = 3) and 1.60 ± 0.049 μg L−1 (n = 3), respectively. Yielded results were in good agreement with the corresponding LC/TIS/MS/MS data obtained by an independent laboratory which were 1.40 and 1.50 μg L−1 for influent and effluent samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号