首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In the present paper,we have considered the steady fully developed laminar natural convective flow in open ended vertical concentric annuli in the presence of a radial magnetic field.The induced magnetic field produced by the motion of an electrically conducting fluid is taken into account.The transport equations concerned with the considered model are first recast in the non-dimensional form and then unified analytical solutions for the velocity,induced magnetic field and temperature field are obtained for the cases of isothermal and constant heat flux on the inner cylinder of concentric annuli.The effects of the various physical parameters appearing into the model are demonstrated through graphs and tables.It is found that the magnitude of maximum value of the fluid velocity as well as induced magnetic field is greater in the case of isothermal condition compared with the constant heat flux case when the gap between the cylinders is less or equal to 1.70 times the radius of inner cylinder,while reverse trend occurs when the gap between the cylinders is greater than 1.71 times the radius of inner cylinder.These fields are almost the same when the gap between the cylinders is equal to 1.71 times the radius of inner cylinder for both the cases.It is also found that as the Hartmann number increases,there is a flattening tendency for both the velocity and the induced magnetic field.The influence of the induced magnetic field is to increase the velocity profiles.  相似文献   

2.
Rotational viscosimeters are widely used to determine liquid viscosity. The technique for processing the experimental data is based fundamentally on the analytic solution of the problem of isothermal flow of a viscous liquid between two rotating cylinders.If in the course of the experiment the heat released due to the internal friction leads to significant heating, then the processing of the experimental results using the equations obtained on the assumption of isothermocity of the flow may lead to large errors. The dissipative heating may be reduced by reducing the angular velocity of rotation of the cylinder; however extensive reduction of the angular velocity is not desirable, since this leads to an increase of the measurement relative error. In addition, there is the possibility of conducting the experiments with a wide variation of the angular velocities in order to identify the structural-rheological peculiarities of the liquid. In the latter case we must be able to separate the purely thermal effects from the influence of the rheological factors. All these questions are discussed in detail in [1]. The authors of [1] obtained the solution of the problem of nonisothermal flow of a Newtonian fluid between two rotating cylinders and gave a technique for processing the experimental data which takes account of the dissipative heating of the fluid. The present paper pursues the same objective for a visco-plastic fluid.An attempt to solve the problem of nonisothermal flow of a viscoplastic fluid was made by Dzhafarov in [2], where the problem was solved in two versions. In the first version it was considered that the viscosity varies hyperbolically with the temperature and the gap between the cylinders is small in comparison with the radius of the inner cylinder. As a result of the linearization of the equations of motion and heat balance, it turned out that in fact the problem of Couette flow of a viscoplastic fluid was solved rather than the original problem. In this case, naturally, such a characteristic of the flow of a viscoplastic fluid in an annular gap as the possibility of the formation of an elastic zone was not covered. In the second version the problem was solved under the assumption that the viscosity is independent of the temperature and the angular velocity is small.In the present study the problem is solved without the limitations discussed above on the angular velocity, the fluid visoosity, and the gap between the cylinders. In this case we consider two types of temperature boundary conditions: a) constant temperatures are specified on the surfaces of the cylinders, which in the general case may be different; and b) a constant temperature is given on the surface of the outer cylinder and the inner cylinder is thermally insulated.  相似文献   

3.
An exact solution is obtained for the problem of steady-state viscous incompressible flow under a pressure difference in the gap between coaxial cylinders for the case where the inner cylinder rotates at a constant angular velocity. The solution differs from the classical Couette-Poiseuille result by the presence of radial mass transfer, which provides for interaction between the poloidal and azimuthal circulations. The flow rate is found to depend linearly on the angular velocity of rotation of the inner cylinder. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 71–77, September–October, 2007.  相似文献   

4.
An analytical solution is presented for the steady state, purely tangential flow of a viscoelastic fluid obeying the Phan-Thien–Tanner (PTT) constitutive equation in a concentric annulus with relative rotation of the inner and outer cylinders. The influence on the velocity distribution within the annulus and on fRe of the Weissenberg number, aspect ratio and an elongational parameter are investigated. The results show that the differences between the radial location of the minimum velocity and of the critical angular velocity compared with their Newtonian counterparts increase as the fluid elasticity increases. The results also show that fRe decreases with increasing Weissenberg number, radius ratio and the elongational parameter in the case of inner-cylinder rotation. In contrast, fRe increases with increasing radius ratio when the outer cylinder is rotating while the inner cylinder is at rest.  相似文献   

5.
Unsteady flow of an Oldroyd fluid between two coaxial circular cylinders is investigated, the fluid being set in motion as the inner cylinder moves from rest for a certain period with linearly growing speed and then stops suddenly. The Laplace transform technique is used to derive the solution. For the case when the gap between the cylinders is small, a simplified solution is obtained. The expression for the shear stress on the wall of the outer cylinder is obtained and particular cases are discussed.  相似文献   

6.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.  相似文献   

7.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.   相似文献   

8.
The flow of a viscous and incompressible fluid between two rotating nonconcentric cylinders is investigated. An approximate solution of the Navier-Stokes equations is obtained by a perturbation method for the case of small eccentricity. A second solution of the basic flow is obtained by imposing the additional geometric restriction of small gap between the two cylinders and employing the asymptotic expansion of Bessel functions by Meissel's series. This second solution is also obtained by formulating a small gap boundary value problem. The transverse velocity profiles are presented for the case when the eccentricity and gap are small and the outer cylinder is stationary.  相似文献   

9.
On the basis of a model kinetic equation, the rarefied gas flow between coaxial circular cylinders, of which the outer one is at rest while the inner one travels along its symmetry axis at a constant velocity, is studied. The problem is solved numerically in both the linear and nonlinear formulations by an implicit conservative method of second-order accuracy. The effect of the rarefaction, the cylinder radius ratio, and the inner cylinder velocity on the flow parameters is investigated. The limits of applicability of the linearized kinetic equation are established.  相似文献   

10.
We study the transient Couette flow of an Oldroyd fluid that fills the gap between two circular cylinders when a constant torque is suddenly applied to the inner cylinder, the outer one being kept motionless. Contrarily to most former studies, the inertia of the moving boundary is not neglected. We give the exact solutions of this problem for a wide class of initial conditions and we present a rigorous asymptotic analysis for small gap devices when the initial state is stationary. The case of Grade 2 fluids is also considered and treated. We also show in some experimental tests, that the knowledge of the relaxation curve of the angular velocity of the rotor can be used to identify the parameters of the model.  相似文献   

11.
An incompressible liquid flow in the gap between two coaxial cylinders, such that the inner rotating (wavy) cylinder has a periodically varying radius along the axial direction while the outer stationary cylinder has a constant radius, is studied experimentally and theoretically. Basic attention is focused on the symmetry-breaking phenomenon of the vortex flow arising from the rotation of the inner wavy cylinder. It is found that the symmetry-breaking phenomenon of the vortical flow structures in this geometry is accompanied by the occurrence of a self-induced axial pressure gradient. A theoretical formulation of the problem of periodic vortical flow prevailing in such a geometry having large axial length is presented. The comparison between the computed and the experimental results is presented and the underlying phenomena are discussed.  相似文献   

12.
The flow over two square cylinders in staggered arrangement is simulated numerically at a fixed Reynolds number (\(Re =150\)) for different gap spacing between cylinders from 0.1 to 6 times a cylinder side to understand the flow structures. The non-inclined square cylinders are located on a line with a staggered angle of \(45^{\circ }\) to the oncoming velocity vector. All numerical simulations are carried out with a finite-volume code based on a collocated grid arrangement. The effects of vortex shedding on the various features of the flow field are numerically visualized using different flow contours such as \(\lambda _{2}\) criterion, vorticity, pressure and magnitudes of velocity to distinguish the distinctive flow patterns. By changing the gap spacing between cylinders, five different flow regimes are identified and classified as single body, periodic gap flow, aperiodic, modulated periodic and synchronized vortex shedding regimes. This study revealed that the observed multiple frequencies in global forces of the downstream cylinder in the modulated periodic regime are more properly associated with differences in vortex shedding frequencies of individual cylinders than individual shear layers reported in some previous works; particularly, both shear layers from the downstream cylinder often shed vortices at the same multiple frequencies. The maximum Strouhal number for the upstream cylinder is also identified at \({G}^{*}=1\) for aperiodic flow pattern. Furthermore, for most cases studied, the downstream cylinder experiences larger drag force than the upstream cylinder.  相似文献   

13.
We study the temperature distribution of a power law fluid in a pressure-driven axial flow between isothermal eccentric cylinders in bipolar cylindrical coordinates. We begin our analysis by writing the equation of energy in bipolar cylindrical coordinates. We then obtain a dimensionless algebraic analytic solution for temperature profiles under a steady, laminar, incompressible and fully developed flow [Eq. (64)]. We find that the dimensionless temperature profile depends upon the radius ratio of the inner to outer cylinders, the eccentricity, the angular position, and the power law exponent n. The temperature is a strong function of the gap between the cylinders. The temperature profiles are flat in the middle of the gap and then, near the wall, suddenly drop to the wall temperature.  相似文献   

14.
Unsteady flow of a second-order fluid between concentric cylinders   总被引:1,自引:0,他引:1  
The unsteady motion of an incompressible second-order fluid contained between two finite coaxial cylinders is examined when the outer cylinder is held fixed while the inner cylinder is constrained to execute an arbitrary angular velocity. A solution is obtained in closed form with the aid of transforms and an expression is obtained for the couple experienced. The particular case of a periodic angular velocity is then examined and some numerical work done. There is a marked difference between the results obtained and their classical counterparts.  相似文献   

15.
In the present study, the effect of Reynolds number (Re) on flow interference between two side-by-side stationary cylinders and the associated flow-induced forces are investigated using finite element method and wavelet analysis. The pitch ratio chosen is T/D=1.7, where T is the separation distance measured between cylinder centers and D is the diameter, and Re, based on the free-stream velocity and the diameter of the cylinder, is varied within the laminar flow regime, i.e., 60<Re<200. The method of continuous wavelet transform is used to analyze time-variant features of flow-induced forces in the time–frequency domain. Flow patterns in the form of vorticity plots are presented to demonstrate the underlying physics. It is found that flow interference initially occurs in the inner vortices shed from the two cylinders, and extends to the outer vortices with increasing Re. The flow behind two cylinders undergoes three regimes: Regime I—unbiased gap flow, Regime II—stable biased gap flow, and Regime III—unstable gap flow. Flow-induced forces show significant variations when the flow transits from one regime to another. In particular, during the transition from Regimes II to III, the forces not only increase by amplitude, but also change their nature from deterministic to random, and show some nonstationary features. This is shown to be caused by the amalgamation of inner and outer vortices behind the two cylinders when the flow interference extends from inner vortices to outer vortices. Whenever possible, the present results are compared with experimental measurements and theoretical predictions. The numerical simulations are consistent with these other results.  相似文献   

16.
Summary The flow of an incompressible viscous fluid due to a periodic pressure gradient through the annular space between two porous concentric circular cylinders with uniform injection into the outer cylinder and uniform suction into the inner cylinder has been considered. The expressions for the pressure and velocity are found. In view of the presence of the Bessel function in the axial component of velocity, we have discussed the two special cases of very small and very large oscillations. An approximate expression for the temperature, including viscous dissipation, when the oscillations are small is also found.  相似文献   

17.
The numerical investigation of the two-dimensional laminar flow past two ro- tating circular cylinders in the tandem arrangement is conducted by the lattice Boltzmann method. The numerical strategy is used for dealing with curved and moving boundaries of the second-order accuracy for velocity and temperature fields. The effects of various rotational speed ratios and gap spacing are studied with the Reynolds number of 100 and the Prandtl number of 0.71. A varied range of rotational speed ratios are investigated for four different gap spacing, i.e., 3.0, 1.5, 0.7, and 0.2. The results show that, for the first cylinder, the lift and drag coefficients for large gap spacing are similar to those for a single cylinder; for the second cylinder, the lift coefficient descends with the increase in the angular velocity for all gap spacing, while the drag coefficient ascends except for the gap spacing of 3.0. The results of the averaged periodic Nusselt number on the surface of the cylinders show that, for small distances between the cylinders and low angular velocities, conduction is a dominant mechanism of heat transfer, but for large distances and high angular velocities, convection is the main mechanism of heat transfer.  相似文献   

18.
The propagation of an axisymmetric longitudinal wave in a finite prestrained compound (composite) cylinder is investigated using a piecewise-homogeneous body model and the three-dimensional linearized theory of wave propagation in prestressed body [1315]. The inner and outer cylinders are assumed to be made of incompressible neo-Hookean materials. Numerical results on the influence of the prestrains in the inner and outer cylinders on wave dispersion are presented and discussed. These results are obtained for the case where the inner solid cylinder is stiffer than the outer hollow cylinder. In particular, it is established that the pretension of the cylinders increases the wave velocity  相似文献   

19.
A technique of high-image-density particle image velocimetry is employed to characterize the instantaneous and averaged patterns of velocity, vorticity and Reynolds stress due to flow past two cylinders in tandem. These features of the flow patterns are characterized in the gap region as a function of the distance between the cylinders. In turn, they are related to the patterns in the near-wake of the two-cylinder system. Along the gap between the cylinders, small-scale concentrations of vorticity are formed in the separated shear layers. These concentrations buffet the surface boundary layer on the downstream cylinder, and thereby influence the eventual shedding of large-scale vortices. Within the gap, the instantaneous structure of the recirculation zones can exhibit both symmetrical and asymmetrical patterns. In the near-wake of the downstream cylinder, the form of the vortex shedding, as well as the averaged patterns of the flow structure, are substantially altered, relative to the case of a single cylinder. The width of the near-wake, as represented by averaged patterns of vorticity, is substantially narrower and the magnitudes of the peak Reynolds stress are significantly attenuated. On the other hand, if the gap region is sufficiently large such that Kármán-like vortices form between the cylinders, the near-wake of the downstream cylinder shows distinctive patterns, and both the wake width and the magnitude of the Reynolds stresses become larger, relative to those at smaller gap width.  相似文献   

20.
The stability of Couette flow of a viscous incompressible fluid between two concentric rotating cylinders in the presence of a radial temperature gradient due to a constant heat flux at the outer cylinder is studied. The critical values of `a' (the wave number) and Ta (the Taylor number) are listed in a table and some critical Taylor numbers are shown graphically. It is shown that as the heat flux is increased the flow becomes more unstable for all values of μ calculated, where μ is the ratio of the angular velocity of the outer cylinder to that of the inner cylinder. Received on 04 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号