首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, pyrolysis and combustion of the sewage sludge (fresh and composted) have been simulated using five fractions: low stability organic compounds, hemicellulose, cellulose, lignin-plastic, and inorganic compounds. Thermal behavior and kinetic parameters (pre-exponential factor and apparent activation energy) of the main components of the sludge are similar to those reported for hemicellulose, cellulose, and lignin present in lignocellulosic biomass. Comparing non-isothermal thermogravimetric analysis data obtained from fresh and composted sewage sludge, it is possible to measure the efficiency of the composting process. Most of the biodegradable matter is volatized in a temperature range from 150 °C to 400 °C. Non-biodegradable organic matter volatilizes between 400 °C and 550 °C. In both, fresh and composted sludges, oxygen presence increases the mass loss rate at any temperature, but differences between pyrolysis and combustion are focused in two clearly defined ranges. At low temperature (200–350 °C), mass loss is related with a volatilization process. At higher temperature (350–550 °C), mass loss is due to slow char oxidation (oxidative pyrolysis).  相似文献   

2.
The pyrolysis of two grape residues (grape skins and the mixture of grape skins and seeds) has been carried out in a pilot bubbling fluidized bed pyrolyzer operating under a range of temperature from 300 to 600 °C and three vapor residence time (2.5, 5, and 20 s), with the aim of determining their pyrolysis behavior including products yields and heat requirements. The composition of the product gases was determined, from which their heating value was calculated. The liquid bio-oil was recovered with cyclonic condensers and separated into two phases, an aqueous phase and an organic phase. The chemical composition of these liquid phases was characterized. In addition, the environmental parameters of the distilled fraction (85–115 °C) of the aqueous phase were tested, while the heating value of the organic phase was determined. Furthermore, the thermal sustainability of the pyrolysis process was estimated by considering the energy contribution of the product gases and of the liquid bio-oil in relation to the pyrolysis heat requirements. The optimum pyrolysis temperatures were identified in terms of maximizing the liquid yield, maximizing the energy from the product bio-oil, and maximizing the net energy from the product bio-oil after ensuring a self-sustainable process by utilizing the product gases and bio-oil as heat sources.  相似文献   

3.
The thermal decomposition process and pyrolysis products of poly(vinyl phenyl ketone) (PVPK) were investigated by thermogravimetric analysis (TGA) and on-line pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS). TGA showed a largest weight loss rate around 380 °C. Py-GC–MS was used for the qualitative analysis of the pyrolysis products at 350, 500, 600, 700 and 850 °C. The major volatile thermal decomposition product was found to be 1-phenyl-2-propenone, which dominated all other volatile species especially under the least severe pyrolysis conditions (<600 °C). At higher temperatures a much wider range of pyrolysis products was obtained. The results have been interpreted assuming that primary random chain scission reactions occur followed by typical unzipping mainly producing monomer units; detachment of the side-group occurs only under more severe pyrolysis conditions. Py-GC–MS showed to be effective in PVPK detection in ink and paint formulations.  相似文献   

4.
Pyrolysis of textile wastes: I. Kinetics and yields   总被引:1,自引:0,他引:1  
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

5.
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

6.
Pyrolysis of a wood chips mixture and main wood compounds such as hemicellulose, cellulose and lignin was investigated by thermogravimetry. The investigation was carried out in inert nitrogen atmosphere with temperatures ranging from 20°C to 900°C for four heating rates: 2 K min−1, 5 K min−1, 10 K min−1, and 15 K min−1. Hemicellulose, cellulose, and lignin were used as the main compounds of biomass. TGA and DTG temperature dependencies were evaluated. Decomposition processes proceed in three main stages: water evaporation, and active and passive pyrolysis. The decomposition of hemicellulose and cellulose takes place in the temperature range of 200–380°C and 250–380°C, while lignin decomposition seems to be ranging from 180°C up to 900°C. The isoconversional method was used to determine kinetic parameters such as activation energy and pre-exponential factor mainly in the stage of active pyrolysis and partially in the passive stage. It was found that, at the end of the decomposition process, the value of activation energy decreases. Reaction order does not have a significant influence on the process because of the high value of the pre-exponential factor. Obtained kinetic parameters were used to calculate simulated decompositions at different heating rates. Experimental data compared with the simulation ones were in good accordance at all heating rates. From the pyrolysis of hemicellulose, cellulose, and lignin it is clear that the decomposition process of wood is dependent on the composition and concentration of the main compounds.  相似文献   

7.
A Pb(Zr,Ti)O3 precursor gel made from a sol prepared using 1,1,1,-tris(hydroxymethyl)ethane, lead acetate and zirconium and titanium propoxides, stabilised with acetylacetone, was analysed using TGA–FTIR analysis. Decomposition under nitrogen (N2) gave rise to evolved gas absorbance peaks at 215 °C, 279 °C, 300 °C and 386 °C, but organic vapours continued to be evolved, along with CO2 and CO until 950 °C. The final TGA step in N2 is thought to relate to decomposition of an intermediate carbonate phase and the final elimination of residues of triol or acetylacetonate species which form part of the polymeric gel structure. By contrast, heating in air promoted oxidative pyrolysis of the final organic groups at ≤450 °C. In air, an intermediate carbonate phase was decomposed by heating at 550 °C, allowing Pb(Zr,Ti)O3 to be produced some 400 °C below the equivalent N2 decomposition temperature.  相似文献   

8.
Thermal Analysis of Casein   总被引:3,自引:0,他引:3  
Case in was analyzed during thermal treatment and pyrolysis. The thermal degradation process of casein was interpreted and thermostability indices, rate, order and activation energy of thermode-structive reaction of casein were determined on the basis of thermogravimetric analysis. The thermodestruction of casein has the characteristics of a first order reaction with activation energy E a=3.87 kcal mol–1 (16.2 kJ mol–1).The pyrolysis of casein was investigated and we determined optimal heating temperature — 550°C and yields of biochar, pitch, pyrolysis water and gases.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

9.
The approach to remove green house gases by pumping liquefied carbon dioxide several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals the formation of dypingite, artinite and if the ferric iron is present brugnatellite are possible; thus necessitating a study of the thermal stability of such minerals. The thermal stability of two carbonate bearing minerals dypingite and artinite together with brugnatellite with a hydrotalcite related formulae have been characterised by a combination of thermogravimetry and evolved gas mass spectrometry. Artinite is thermally stable up to 352 °C. Two mass loss steps are observed at 219 and 355 °C. Dypingite decomposes at a similar temperature but over a large number of steps. Brugnatellite shows greater stability with decomposition not occurring until after 577 °C. The thermal decomposition of brugnatellite occurs over a number of mass decomposition steps. It is concluded that pumping liquefied green house gases into magnesium bearing mineral deposits is feasible providing a temperature of 350–355 °C is not exceeded to prevent escape of CO2 towards the surface. In contrast, the water loss occurring at lower temperatures could have a positive effect on the geosequestration of CO2 as it probably causes a decrease in the molar volume of secondary carbonate minerals and consequently an increase in aquifer porosity.  相似文献   

10.
A continuous flow reactor was operated at atmospheric pressure and feed rate of 0–1.5 kg h−1 for degradation of PE, PP and PS in presence of 1–2 wt% PVC. The degradation temperatures were between 360 and 440 °C depending on the feeding material. The influence of PVC, temperature and silica-alumina catalysts on degradation behavior and on the properties of the products was studied and discussed. Different effects were observed for binary PE/PVC, PP/PVC, PS/PVC and complex PE/PP/PS/PVC mixtures due to specific interactions between PVC and each hydrocarbon polyolefin. Silica-alumina catalysts decreased the Cl concentration in oils but it seems to generate high amounts of Cl-containing organic compounds in gases.  相似文献   

11.
Three solid wastes generated from the vegetable tanning of bovine skin in the Leather Industry (shavings, trimmings and buffing dust) were mixed together in the same proportions in which they were produced and the mixture was then used as a pyrolysis precursor for this research study. The optimal pyrolysis conditions for obtaining energy from the generated fractions (char, tar and gas fraction), and the preparation of activated carbons from the carbonaceous material (char), were established. The final conditions were chosen from two different points of view, the thermogravimetric results (TG/DTG) obtained at different heating rates (2–20 °C/min) and an optimization of the pyrolysis parameters by means of experiments carried out in a conventional furnace. The pyrolysis conditions finally selected were: heating rate (5 °C/min), final temperature (750 °C), and time at final temperature (60 min) and inert gas flow (N2 150 ml/min). The carbonaceous material (char) obtained exhibits good properties as a solid fuel due to its high calorific value and relatively low ash content. It also shows suitable characteristics as a precursor for the preparation of activated carbons. The condensable fraction has a predominantly phenolic nature and contains significant amounts of nitrogen compounds (nitriles, diketopiperazines, etc.), alkanes, alkenes, acids and esters, derived from the decomposition of tannins and collagen, with possible industrial applications in the preparation of chemical products. The gaseous phase is rich in carbon monoxide and carbon dioxide, and also contains a certain amount of methane and hydrogen. The syngas content increases with the pyrolysis temperature. A kinetic study of the pyrolysis was carried out using a model of independent reactions. The variation in the heating rate produced a slight shift to higher temperatures of the decomposition peaks, although this did not significantly affect either the kinetic parameters of the degradation processes or the percentage weight losses.  相似文献   

12.
A knowledge of the kinetics of decomposition of biopolymers on heating is important mainly in two domains: forest fires and the incineration of biomass for the production of electric energy. For the study by thermogravimetry of biopolymers (cellulose, holocellulose and lignin), samples of several Mediterranean plants were used.The cellulose decomposition fits well with apparent first-order kinetics. The activation energy in an air flow is about 185 kJ mol–1. It ranges between 149 and 200 kJ mol–1 for holocellulose (cellulose+hemicellulose) in an air flow. Under nitrogen, the values are higher. Differences in the chemical structures of the hemicelluloses (pentosan and hexosan) may explain these variations. The lignins also display various chemical structures. We observed large differences in the thermal decompositions of the various samples. The decomposition rate is increased in a nitrogen flow containing 6% oxygen. We observed a correlation between the maximum decomposition rate and the heating rate. This variation presents a particular form (linear with two slopes). Only the second part seems to be interesting.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
Fourier transform infrared (FT-IR) and Raman spectroscopy were employed to study the hydrothermal stability and the influence of surface functional groups on the surface wettability of methyl-modified silica films. The surface free energy parameters of the silica films were determined using the Lifshitz-van der Waals/acid–base approach. The thermal decomposition mechanisms of the CH3 groups in the methyl-modified silica material are proposed. The results show that with the increase of methyltriethoxysilane (MTES)/tetraethylorthosilicate (TEOS) ratio, the surface free energy and surface wettability of the silica films decrease greatly. This is mainly because of the contribution of the acid–base term; the intensity of Si–CH3 groups increases at the expense of the intensity of O–H groups in the samples. The surfaces of the methyl-modified silica films exhibited predominantly monopolar electron-donicity. The contact angle on the silica film surface reaches its maximum value when calcination is performed at 350 °C. Thermogravimetric analysis implies that some low molecular weight species, such as H2, CH4, and C, are eliminated upon thermal decomposition of the –CH3 groups. The Si–CH3 and –CH3 vibrational bands diminish in intensity as the calcination temperature is increased, disappearing completely when the calcination temperature is increased to 600 °C. When the calcination temperature is increased to 750 °C, the free carbon and CSi4 species will be formed.  相似文献   

14.
The basic pyrolysis behaviour of eight different biomass fuels has been tested in a thermogravimetric analyser under dynamic conditions (5, 20 and 50 °C min?1 heating rates) from room temperature up to 1,000 °C. Their decomposition was successfully modelled by three first-order independent parallel reactions, describing the degradation of hemicellulose, cellulose and lignin. Hemicellulose would be the easiest one to pyrolyse, while lignin would be the most difficult one. Experimental and calculated results show good agreement. The reactivity of the different biomass type functions of various thermal, kinetic and composition parameters are discussed. The effect of the heating rate on pyrolysis behaviour was studied, and a comparison between slow and fast heating rate reveals a small displacement of the DTG profiles to higher temperatures. The heating rate not only affects the highest mass loss rate temperature but also influences the mass loss rate value.  相似文献   

15.
Thermogravimetric analyzer (TGA) has been applied to measure the kinetics of the thermal degradation of virgin polyvinylpyrrolidone (PVP) and a phase stabilized PVP–ammonium nitrate (AN) material. The PVP–AN samples have been prepared by using 20 wt.% of AN and PVP of three different molecular weights. Virgin PVP undergoes a major mass loss in the region 380–550 °C leaving a small amount of nonvolatile residue. The application of an advanced isoconversional method to the respective degradation process demonstrates that its effective activation energy increases from 70 kJ mol−1 to a plateau value at 250–300 kJ mol−1, which is independent of the molecular weight. The PVP–AN materials lose spontaneously 20% of their mass on heating above the glass transition temperature of the PVP matrix (160–180 °C). After the escape of AN, the remaining PVP matrix degrades in the same temperature region as virgin PVP, however, the effective activation energy of this degradation is 150–200 kJ mol−1.  相似文献   

16.
A technique has been developed to study cellulose pyrolysis by in situ visualization of cellulose transformation in a quartz capillary under a microscope using a CCD camera monitoring system and Raman spectroscopy. The processes and temperature of cellulose transformation during pyrolysis reaction can be observed directly. In situ visualization of reaction revealed that how oil is generated and expulsed concurrently from cellulose during pyrolysis. The in situ visualization result is the first direct evidence to show cellulose pyrolysis transformation. Pyrolysis characteristics were investigated under a highly purified N2 atmosphere using a thermogravimetric analyzer from room temperature to 500 °C at the heating rate of 5 °C/min. The results showed that three stages appeared in this thermal degradation process. Kinetic parameters in terms of apparent activation energy and pre-exponential factor were determined.  相似文献   

17.
Wurtzite GaN taper rods assembled from highly oriented nanoparticles were synthesized using NaNH2 and the as-synthesized GaOOH prismatic rods as reactants at 600 °C for 5 h. The lengths of the GaN taper rods are in the range of 4–6 μm and the diameters are about 0.5–1.5 μm. It was found that a slow heating rate (1 °C min−1) was beneficial to keeping the one-dimensional (1D) skeleton of GaN, otherwise only GaN nanoparticles were obtained with a quick heating rate (10 °C min−1). Selected area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) observations revealed that the GaN taper rods assembled from highly oriented nanoparticles and there were crystal defects in the GaN structure. The GaN taper rods displayed luminescence emission in the blue-violet region, which may be related to crystal defects.  相似文献   

18.
Urea has been intercalated mechanochemically into dehydrated halloysite and analyzed by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance ultraviolet/visible spectroscopy (DRUV–VIS), thermal analysis (TGA/DTA), transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR). The basal distance expands from 7.4 to 10.7 Å and the interaction of urea to adjacent layers of halloysite through hydrogen bonds increases the structural order of the matrix. After heat treatment in air at different temperatures, decomposition products begin to appear starting from 100 °C. Although the basal distance remains constant up to 160 °C and collapses to the original value at 200 °C, urea and the decomposition products are still present in the sample. Starting from 125 °C, urea decomposition products reduce halloysite structural Fe3+ centers to Fe2+, as indicated by DRUV–VIS and EPR spectroscopy.  相似文献   

19.
In the present study, conventional and multivariate methods were used to optimize conditions for direct determination of aluminum in soft drinks by electrothermal atomic absorption spectrometry. For the conventional method, the optimized experimental parameters were: pyrolysis and atomization temperatures and chemical modifier. A multivariate study was performed using factorial design and the optimized parameters were the same employed in the univariate method including pyrolysis time. For the conventional method, the optimal conditions obtained were: pyrolysis temperature of 1600 °C, atomization temperature of 2700 °C, and Zr as permanent modifier. For the factorial design in the multivariate optimization, the Pareto´s chart showed that the atomization temperature, the modifier, and the pyrolysis temperature presented a significant effect on the integrated absorbance and the interaction between pyrolysis temperature and pyrolysis time also had a significant effect on the signal. Better results were obtained using Zr as modifier. The surface response indicates that the lowest pyrolysis (1100 °C) and atomization temperatures (2350 °C) provide higher absorbance for aluminum in soft drinks. Characteristic mass of 23.4 and 19.4 pg and LOD of 17.9 and 11.3 μg L− 1 was obtained to conventional and multivariate methods, respectively. The calibration was accomplished with standard addition in a range of 60–200 μg L− 1 for conventional method and of 38–200 μg L− 1for multivariate method with R higher than 0.99 for both conditions. Recoveries in both studies were nearly 100% with adequate precision for GFAAS analysis. For the Al concentrations level found in soft drinks, both experimental conditions are adequate as good results were obtained in recovery studies. The Al concentrations in different soft drinks range from 147.9 to 599.5 μg L−1. Higher concentrations were found in soft drinks sold in Al cans than in PET bottles, indicating that contamination can occur.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号