首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 983 毫秒
1.
A previews study of germanium selenide glass films by scanning electron microscopy and atomic force microscopy revealed a heterogeneous surface morphology consisting of granular regions 15–50 nm in size, which cause high optical losses. The present work was performed in order to further characterize such materials using spectroscopic ellipsometry, infrared (IR) and Raman spectroscopies. Chalcogenide glass films with GeSe2, Ge28Sb12Se60 and GeSe compositions have been deposited on single crystal silicon and silica glass substrates by vacuum thermal evaporation. The film thickness and the optical constants were obtained from spectroscopic ellipsometry using the Tauc-Lorenz dispersion formula. A model was derived for the film structure, which included a roughness layer at the surface. This top layer was found to have a thickness of 5–15 nm, of the order of the size of the granular regions previously reported. The optical bandgap of the samples increased with increasing selenium content, while the refractive index decreased. Despite a previous report of large scale phase separation in bulk Ge26Sb14Se60 glass, the fundamental IR and Raman spectra obtained in the present work did not provide any clear evidence for such phase separation which could be associated with the heterogeneous nanostructure observed at the surface of the films.  相似文献   

2.
A.N. Trukhin  K.M. Golant 《Journal of Non》2009,355(34-36):1719-1725
Photoluminescence (PL) spectra and kinetics of high purity amorphous silicon dioxide with ultra low hydroxyl content is studied under the excitation by F2 excimer laser (157 nm wavelength) pulses. Materials synthesized in the SPCVD plasma chemical process are studied before and after fusion. Two bands are found in the PL spectra: one centered at 2.6–2.9 eV (a blue band) and the other at 4.4 eV (a UV band). Luminescence intensity of unfused material is found to increase significantly with exposure time starting from a very small level, whereas in fused counterpart it does not depend on irradiation time. Both bands show complicated decay kinetics, to which add exponential and hyperbolic functions. The UV band of the unfused material is characterized by decay with exponential time constant τ  4.5 ns and hyperbolic function tn, where n = 1.5 ± 0.4. For the blue band the hyperbolic decay kinetics with n  1.5 extends to several milliseconds, gradually transforming to the exponential one with τ = 11 ± 0.5 ms. In fused glass relative contribution of the fast component to the UV band is small whereas for the blue one it is great, that allows one to more accurately determine the hyperbolic law factor n = 1.1 ± 0.1 typical for tunneling recombination. Simultaneous intracenter and recombination luminescence, the later occurring with the participation of laser radiation induced defects, add particular features to the decay kinetics. Spectra of the above luminescence processes are different. A less sharp position of bands is associated with the recombination luminescence. The origin of the observed PL features we attribute to the presence of oxygen deficient centers in glass network in the form of twofold coordinated silicon. Such centers being affected by network irregularities can be responsible for the recombination PL component. A great variety of network irregularities is responsible for centers’ structural inequivalence, which causes a non-uniform broadening of PL spectral and kinetic parameters.  相似文献   

3.
B. Frumarova  M. Frumar  J. Oswald  M. Kincl  M. Vlcek 《Journal of Non》2009,355(37-42):1865-1868
Glasses of systems 100-y((GeS2)80(Sb2S3)20−x(PbI2)x)yPr2S3, x = 0; 2; 5, 8; y = 0; 0.01; 0.1; 0.5 and 99.9-z((GeS2)80(Sb2S3)18(PbI2)2)0.1Pr2S3zYb2S3, z = 0.05; 0.1; 0.15) were synthesized in high purity. Optically well transparent glasses were obtained for x  5 mol.% PbI2, for y  0.1 mol.% Pr2S3 and for z  0.15 mol.% Yb2S3. The glasses were stable and homogeneous, as confirmed by X-ray diffraction and electron microscopy, with high optical transmittivity from visible (red) region up to infrared region (900 cm−1). The density of the glasses was 3.26–3.33 gcm−3 for PbI2 containing glasses. The glass transition temperature, Tg, was 320–336 °C. The optical absorption bands in rare-earth doped glasses corresponded to 3H43F4, 3H43F3, 3H4–(3F2 + 3H6) f–f electron transitions of Pr3+ ions and to 2F7/22F5/2 f–f electron transitions of Yb3+ ions. Strong luminescence band with maximum near 1340 nm (electron transition 1G43H5) was found in Pr2S3 doped glasses. The intensity of this band was rising with doping by Yb3+ ions. The possible mechanism of the luminescence enhancement is suggested.  相似文献   

4.
Growth on AlN/4H–SiC substrates of coalesced, non-polar GaN films having volumes of material with reduced densities of dislocations and stacking faults has been achieved from etched stripes via the statistical and experimental determination of the effect of temperature and V/III ratio on the lateral and vertical growth rates of the GaN{0 0 0 1} faces combined with pendeo-epitaxy. AFM of the uncoalesced GaN(0 0 0 1) and GaN vertical faces revealed growth steps with some steps terminating at dislocations on the former and a pitted surface without growth steps, indicative of decomposition, on the latter. Coalescence was achieved via (a) a two-step route and the parameters of (1) and V/III=1323 for 40 min and (2) 1020 °C and V/III=660 for 40 min and (b) a one-step route that employed and a V/III ratio=660 for 6 h. The densities of dislocations in the GaN grown vertically over and laterally from the stripes were 4×1010 cm−2 and 2×108 cm−2, respectively; the densities of stacking fault in these volumes were 1×106 cm−1 and 2×104 cm−1, respectively. The defects in the wing material were observed primarily at the bottom of the film where lateral growth of the GaN occurred from the AlN and the SiC. Plan view AFM also revealed different microstructures and a reduction in the RMS roughness values from 1.2 to 0.95 nm in these respective regions.  相似文献   

5.
Tin amalgam, which is obtained by pouring mercury onto a sheet of tin, has been used in the production of reflective coatings for mirrors. The corrosion processes of the amalgam layer were investigated in several mirrors from historical buildings located in southern Spain using SEM/EDS, XPS, and GID. Mercury and Sn4+ are present as spheres on the amalgam surface due to the evaporation process (5 nm). The profile shows a mixture of Sn2+ and Sn4+. The original amalgam was composed of a binary alloy of tin and mercury (Hg0.1Sn0.9) and metallic tin. In this paper the tin oxidation mechanism of the amalgam is described. Liquid mercury is volatile and evaporates slowly, leaving fine tin particles that oxidize easily, forming tin monoxide (SnO) and tin dioxide (SnO2). The mercury-rich phase accelerates the corrosion of the tin-rich phase.  相似文献   

6.
The role of the compositional modulation at nano-scale dimensions (2–10 nm) in the enhancement of optical recording parameters in nanomultilayers, which contain Sb as active, optical absorbing and diffusing layers and As2S3 as barrier (matrix) layers was investigated. Comparison was made with single homogeneous layers made of ternary (As2S3)xSb1−x glasses and co-deposited from Sb and As2S3. It was shown that essential increase of the recording efficiency, sensitivity of the bleaching process, broadening of its spectral range occurs due to the stimulated interdiffusion of adjacent components in Sb/As2S3 nanomultilayers with optimized Sb layer thickness.  相似文献   

7.
Evgeny M. Dianov   《Journal of Non》2009,355(37-42):1861-1864
It has been shown recently, that Bi-doped glass optical fibers are a very promising active laser medium. Luminescence of Bi-doped glasses takes place in a spectral region of 1150–1500 nm, where no efficient fiber lasers (or any other efficient lasers) exist. The glasses have very broad luminescence bands (200–400 nm) and long lifetime (200–700 μs). The Bi absorption bands are situated in a spectral region of 500–1100 nm where long-lived high-brightness laser diodes developed for the pumping of lasers and amplifiers are available. Besides, strong luminescence has been observed in a variety of glass compositions. In this paper the recent results on the new laser material – Bi-doped glasses and optical fibers are reviewed. First, luminescence properties of various Bi-doped glasses are discussed. Then we describe the Bi-doped silica-based optical fiber fabrication and the absorption and luminescence properties of the fibers. At last some results on Bi-doped fiber lasers and their applications are presented.  相似文献   

8.
Chalcogenide bulk glasses Ge20Se80−xTex for x(0,15) have been prepared by systematic replacement of Se by Te. Selected glasses have been doped with Ho, Er and Pr, and samples have been characterized by transmission spectroscopy, measurements of dc electrical conductivity and low-temperature photoluminescence. Absorption coefficients have been derived from measured transmittance and estimated reflectance. Arrhenius plots of dc electrical conductivity, in the measured temperature range 300–460 K, are characterized by single activation energies roughly equal to the half of the optical gap. Activation energies deduced from Arrhenius plots reveal a systematic decrease with increasing Te content. Similarly, both absorption and low-temperature photoluminescence spectra reveal shifts of absorption edge and/or dominant luminescence band to longer wavelength due to Te → Se substitution. Samples doped with Ho and Er exhibit a strong luminescence at 1200 and 1540 nm due to 5I6 → 5I8 and 4I13/2 → 4I15/2 transitions of Ho3+ and Er3+ ions, respectively. Pr doped samples exhibit only a relatively weak luminescence peak at 1590 nm, which we tentatively assign to 3F3 → 3H4 transition of Pr3+ ions. Absorption of the base glass luminescence at 1460 and 1520 nm has been observed at low temperature on samples doped with Pr and Er, respectively.  相似文献   

9.
We report on the structural details and microphase separation of the bulk glasses Agx·(As33S67)100-x for 0x25. Glass–glass phase separation occurs over a wide range of Ag content, i.e. 4x20. An off-resonant polarized Raman spectroscopic study has been carried out to elucidate structural aspects at the short- and medium-range structural order of the glasses. Analysis of Raman spectra revealed quantitative changes of the sulfur-rich microenvironments that reduce upon adding Ag. Scanning electron microscopy combined with X-rays microanalysis have been utilized to examine the type and extent of phase separation, and to provide quantitative details on the atomic concentrations in the Ag-poor and Ag-rich phases. It has been shown that at 7 at.% Ag the Ag-rich phase percolates through the structure; this effect can be associated with an ionic-to-superionic behavior of these glasses in accordance with similar studies on the stoichiometric arsenic sulfide glass; although the phase separation observed in the present glasses is qualitatively different.  相似文献   

10.
Jieun Chang  Chao Liu  Jong Heo   《Journal of Non》2009,355(37-42):1897-1899
PbSe quantum dots (QDs) were synthesized in borosilicate glass and their optical properties were investigated. The typical quantum confinement effects were clearly observed from the absorption when the average radii of the QDs changed from 1.7 to 3.1 nm. Photoluminescence from PbSe QDs was achieved in 1.1–2.2 μm wavelength region that covers the entire fiber-optic telecommunication window. Borosilicate glasses containing controlled size of PbSe QDs provide potentials for the fiber-optic amplifiers.  相似文献   

11.
The growth of highly oriented 3C–SiC directly on an oxide release layer, composed of a 20-nm-thick poly-Si seed layer and a 550-nm-thick thermally deposited oxide on a (1 1 1)Si substrate, was investigated as an alternative to using silicon-on-insulator (SOI) substrates for freestanding SiC films for MEMS applications. The resulting SiC film was characterized by X-ray diffraction (XRD) with the X-ray rocking curve of the (1 1 1) diffraction peak displaying a FWHM of 0.115° (414″), which was better than that for 3C–SiC films grown directly on (1 1 1)Si during the same deposition process. However, the XRD peak amplitude for the 3C–SiC film on the poly-Si seed layer was much less than for the (1 1 1)Si control substrate, due to slight in-plane misorientations in the film. Surprisingly, the film was solely composed of (1 1 1) 3C–SiC grains and possessed no 3C–SiC grains oriented along the 3 1 1 and 1 1 0 directions which were the original directions of the poly-Si seed layer. With this new process, MEMS structures such as cantilevers and membranes can be easily released leaving behind high-quality 3C–SiC structures.  相似文献   

12.
N. Frolet  A.A. Piarristeguy  M. Ribes  A. Pradel   《Journal of Non》2009,355(37-42):1969-1972
Thin films of Ag photo-doped-GeySe1−y films were prepared by RF co-sputtering technique. A systematic study of the relation existing between the host layer composition and the saturation rate in silver was carried out. Morphology and composition studies before and after chemical etchings were performed by scanning electron microscopy and electron probe micro-analyses, respectively. Raman spectroscopy studies showed the presence of corner-sharing and edge-sharing Ge(Se1/2)4 tetrahedra in all thin films. The vibration mode corresponding to Sen-chains is observed for the Ge-poor host layer and on the contrary, Ge-rich thin films exhibited some tendency to form homopolar Ge–Ge bonds as a part of ethane-like Ge2Se6 units. These investigations revealed the amount of Ag that could be incorporated in the host layer. Such an amount strongly depends on the relative ratio Ge/Se in the GeySe1−y thin film. For the Ge-poor host layer, an incorporation of Ag (54 at.%) was observed but also a drastic increase in the film heterogeneity. On the other hand, the host layers with higher Ge content showed homogeneous surfaces and a saturation level of 32–41 at.% Ag.  相似文献   

13.
The Ge–Te system exhibits one main composition domain where glasses can be easily prepared by melt quenching technique; this domain is centered on the eutectic composition Ge15Te85. In this work, bulk flakes and films of composition GexTe100−x with  50 at.% were prepared by two different quenching techniques: (i) the twin roller quenching for bulk flakes and, (ii) the co-thermal evaporation for films (with thickness comprised between 2 and 14 μm). Electron Probe Micro-Analysis was used to check the composition of the materials while X-ray diffraction allowed identifying the amorphous state and/or the crystalline phases present in the GexTe100−x samples. Thermal properties for both types of materials were investigated by differential scanning calorimetry. The glass-forming regions were: 11.7–22.0 at.% Ge for bulk flakes and 10.2–35.9 at.% Ge for films. A similar thermal behavior of bulk flakes and thick films was highlighted by Differential Scanning Calorimetry.  相似文献   

14.
We report a structural investigation of bulk Ge-rich Ge–S–AgI chalcohalide glasses. A vibrational spectroscopic study of the quaternary system (AgI)x (GeS1.5)100−x (0  xAgI  20) has been undertaken using infrared spectroscopy and Fourier transform Raman scattering. It was found that the GeS1.5 Raman spectrum is compatible with a glass structure composed of corner- and edge-sharing mixed GeSnGe4−n (n = 0–4) tetrahedra where units with n = 2–4 dominate, whilst the fraction of corner-sharing units are significantly lower than the corresponding fraction in the stoichiometric GeS2 glass. The addition of AgI has revealed a subtle but systematic effect in the structure of the Ge-rich glass matrix, manifested by mild decrease of the ES units and the concomitant increase of complex GeSnI4−n or GeSnGemI4-nm tetrahedra whose vibrational modes form a continuum at low frequencies. Although, AgI seems to cause subtle structural changes due to the formation of Ge–I bonds, it is also evident that AgI does not act as a real modifier that would depolymerize appreciably the Ge–S network structure.  相似文献   

15.
The role of the composition and of the related changes of the structure in the formation of the surface of amorphous AsxSe1−x (0 < x < 0.5) layers before and after light treatment was investigated by direct measurements of the surface roughness at nanometer-scale and surface deformations at micrometer-scale under influence of illumination. It was established that the surface roughness of the films, deposited by vacuum thermal evaporation, decreased with increasing As content, especially in compositions 0.1  x  0.3, where the maximum light stimulated surface deformations (localized expansion) occurs. Both relate to the rigidity percolation range and the maximum photoplastic effects, which are not directly connected to the known photodarkening effect, since it is minimal for these compositions.  相似文献   

16.
M. Elisa  B. Sava  A. Diaconu  D. Ursu  R. Patrascu 《Journal of Non》2009,355(37-42):1877-1879
The paper presents a study based on luminescence characteristics of phosphate glasses containing Cu2+, Mn4+ and Sb3+. The glass samples obtained by a wet chemical route belong to Li2O–BaO–Al2O3–La2O3–P2O5 oxide system. The oxide composition of the glass samples is calculated to obtain a vitreous network composed of metaphosphate chains bonded by modifier ions (Li+, Ba2+ and La3+) and fluorescent ions. The absorption spectra of the samples were acquired in the UV domain in order to establish the excitation wavelength for each fluorescent ion. The absorption peaks of Sb3+ ion are ranged at 285 nm and 250 nm, Mn2+ ion at 280 nm and 365 nm, Cu2+ ion at 295 nm and 313 nm. The luminescence peaks of Cu2+, Mn4+ and Sb3+ ions are found in the visible domain at different wavelengths, depending on the oxidation state and coordination symmetry of each fluorescent ion. The fluorescence of Sb3+ ion has a strong signal at 450 nm and a weak one at 465 nm, Mn2+ ion shows a fluorescence peak at 600 nm and the pair Cu2+/Cu+ ions reveals a fluorescence emission at 460 nm.  相似文献   

17.
X-ray photoelectron spectroscopy and depth profile analysis were used to investigate the X-ray-induced silver photodiffusion into an amorphous As50Se50 thin film. At the initial stages of irradiation an induction period was observed while core level spectra analysis revealed the existence of a mixed As–Se–Ag interlayer between the metal and the chalcogenide matrix. It was found that during the induction period this interlayer is enriched in silver and the existing As–Se–Ag intermediate species are transformed to Ag–Se–Ag that form the metal source for the effective silver photodiffusion. With further irradiation photodiffusion proceeds by the disruption of Ag–Se bonds and the recombination of As atoms with Se to stable As–Se units. Ultimately, silver concentration reaches a plateau when the diffusion stops. A separated Ag2Se phase on the film’s surface is identified at this stage. Depth profile analysis shows that silver has been homogenously diffused into the chalcogenide matrix and the Ag2Se phase exists only at the top surface layers probably in the form of quasi-crystalline clusters that prohibit further Ag diffusion.  相似文献   

18.
Thermal properties and structure of AsxSe100−x and SbxSe100−x glass-forming systems (x = 0, 1, 2, 4, 8 and 16) were studied by conventional and StepScan DSCs and Raman spectroscopy. Compositional dependence of the glass transition temperature, Tg, was determined from reversible part of StepScan DSC records and discussed. The attention was also focused on the crystallization of undercooled melts of these systems. It was found that only selenium crystallizes from undercooled melts of As–Se system and its tendency to crystallize decreases markedly with increasing As content, for arsenic content higher than 4 at.% no crystallization was observed. In the case of Sb–Se system Sb2Se3 crystallizes in the first step followed by trigonal selenium crystallization from non-stoichiometric undercooled melt. Sb2Se3 crystallizes from incongruent melt with crystallization enthalpy ΔHc(Sb2Se3) = −52 ± 2 J/(g of Sb2Se3), Johnson–Mehl–Avrami kinetics of crystallization and kinetic exponent close to 3 was found. Raman spectra were measured to obtain basic information on the structure of both glassy systems.  相似文献   

19.
The influence of crucibles (Au or Pt) on the structure, electrical, dielectric and optical properties of 70TeO2·30PbCl2 glasses doped with Pr3+ added as a metal, chloride, or oxide, in concentrations of 500–1500 wt-ppm, is reported. The dc conductivity of ‘pure’ glasses prepared in Au crucibles is two orders of magnitude higher than that of those prepared in Pt crucibles. Upon doping, the dc conductivity of glasses prepared in Pt and Au crucibles increases or decreases, respectively. The static relative permittivity is equal to 33 ± 2. In the range of 640–700 nm, six photoluminescence (PL) peaks were observed, at 641.5, 647.1, 652.4, 660.8, 662.9, and 664.5 nm. In the range of 200–1200 cm−1, seven Raman scattering (RS) peaks were observed at 184, 217, 321, 468, 654, 735 cm−1, and a small peak at 650 cm−1. Both spectra were deconvoluted using symmetrical Gaussian functions. Relative intensities of PL and RS bands depend on the concentration and chemical form of Pr3+ and on the material of the crucible. However, positions of these bands are independent of these conditions.  相似文献   

20.
Nd3+-doped NaGd(MoO4)2 crystal with dimensions were grown by Czochralski method. Nd3+:NaGd(MoO4)2 crystal melts at 1182 °C. The hardness of Nd3+:NaGd(MoO4)2 crystal is 334 VDH. The specific heat is 72.6 cal/mol K. The thermal expansion coefficients are for c-axis and for a-axis, respectively. The absorption cross-sections of Nd3+:NaGd(MoO4)2 crystal are with a FWHM of 9 nm at the 804 nm for π-polarization and with a FWHM of 17 nm at 807 nm for σ-polarization, respectively. The emission cross-section σem are at 1063 nm for π-polarization and 1.94×10-20 at 1070 nm cm2 for σ-polarization, respectively. The fluorescence lifetime τf is 93.9 μs at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号