首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Bakholdin  I. B. 《Fluid Dynamics》1985,20(5):784-790
The nonlinear ray method [1] is used to investigate the propagation of solitary waves over an uneven bottom. In the process of nonlinear evolution of the wave front, singular points develop in it; these are treated in the given model as discontinuities [2, 3]. In contrast to earlier studies, it is not assumed here that the intensity of the discontinuity is weak. Boundary conditions at the discontinuities are introduced on the basis of the results of Miles and Bakholdin [4–6], and this makes it possible to take into account the energy loss at a discontinuity and the effects of wave reflection and construct a number of new self-similar solutions for the propagation of a wave above a ridge and trough. The main attention is devoted to considering how the type of solution depends on the parameters of the wave and the relief. For certain values of the parameters, the self-similar solution of the encounter of a homogeneous wave with a ridge is not unique. The reason for this is the singularity of the relief at the end of the ridge. A numerical investigation has therefore also been made of the encounter of a wave with a ridge having a smooth relief at its end. For an under-water trough and a ridge—trough system, self-similar solutions with complete or partial reflection or transmission of the wave energy into the trough are found. A reflected wave can also arise from an encounter with a ridge.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 137–144, September–October, 1985.I thank A. G. Kulikovskii and A. A. Barmin for their interest in the work and for valuable comments made as the paper was being prepared for press.  相似文献   

2.
A new technique for systematically investigating biperiodic (two-wave) steady-state solutions is described with reference to modified Korteweg-de Vries and Schrödinger equations which generalize the conventional model equations for waves on water, in plasmas, and in nonlinear optics [1]. Among these solutions those with ordinary and resonance wave interactions are distinguished. Both singular solutions similar to the solitons of a resonantly interacting wave envelope and solitary waves are found. The soliton-like solutions obtained are used for describing the wave jump structure.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 113–124, July–August, 1996.  相似文献   

3.
A study is made of the influence of an underwater ridge on a solitary wave that prior to the interaction with the ridge has the form of a circle situated outside the ridge. It is shown that the nonlinear effects lead to a concentration of the wave energy above the ridge. As they move away from the source, the waves propagating above the ridge are not damped in the considered approximation but are damped everywhere away from the ridge. An analogy is pointed out between the propagation of the wave and two-dimensional steady flows of a fluid, and this makes it possible to use hydrodynamic intuition for qualitative predictions about the nature of the wave propagation in various cases. All the results of the paper can be extended to the case of waves that are periodic in time.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 100–105, July–August, 1982.  相似文献   

4.
Solitary waves in a thin layer of viscous liquid which is running down a vertical surface under the action of gravity are investigated. The existence of such waves was demonstrated in the experiments of [1, 2]. The difficulties that must be faced in a theoretical computation were also noted in these studies. Below a solution of the problem of stationary waves is obtained by the method of expansion in the small parameter in two regions with subsequent matching and also by a numerical integration method. It is shown that in each case a solution of solitary wave type exists along with the single-parameter family of periodic solutions (parameter—the wave number ). On decreasing the wave number, the periodic waves go over into a succession of solitary waves.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 63–66, January–February, 1977.The authors thank L. N. Maurin for helpful discussions and A. M. Tereshchenko for assisting in the computations.  相似文献   

5.
The equations describing the stationary envelope of periodic waves on the surface of a liquid of constant or variable depth are investigated. Methods previously used for investigating the propagation of solitons [1–5] are extended to the case of periodic waves. The equations considered are derived from the cubic Schrödinger equation assuming slow variation of the wave parameters. In using these equations it is sometimes necessary to introduce wave jumps. By analogy with the soliton case a wave jump theory in accordance with which the jumps are interpreted as three-wave resonant interactions is considered. The problems of Mach reflection from a vertical wall and the decay of an arbitrary wave jump are solved. In order to provide a basis for the theory solutions describing the interaction of two waves over a horizontal bottom are investigated. The averaging method [6] is used to derive systems of equations describing the propagation of one or two interacting wave's on the surface of a liquid of constant or variable depth. These systems have steady-state solutions and can be written in divergence form.The author wishes to thank A. G. Kulikovskii and A. A. Barmin for useful discussions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 113–121, September–October, 1989.  相似文献   

6.
Self-similar solutions describing the incidence of a uniform solitary wave on a semi-infinite linear trough are obtained on the basis of the nonlinear ray method [1]. Previously, in investigating the incidence of a wave on a trough [2] the conditions at the discontinuities present in the solutions were derived on the assumption that they are of low intensity. In the present study the use of the conditions at the discontinuities obtained by investigating soliton interaction [3–5] has made it possible to construct a series of new solutions and take into account wave reflection effects and the formation of a shadow zone beyond the trough. The types of solutions that occur are established in terms of the relations between the wave parameters and the relative depth of the trough. To ensure that self-similar solutions exist for all values of the parameters it was necessary to introduce a type of discontinuity not previously encountered [5–7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 102–107, July–August, 1987.The author wishes to thank A. G. Kulikovskii and A. A. Barmin for discussing the work.  相似文献   

7.
Equations are obtained which describe the propagation of long waves of small, but finite amplitude in an ideal weakly conducting liquid and on the basis of these equations the influence of MHD interaction effects on the characteristics of the solitary waves is investigated. The wave equations are derived under less rigorous constraints on the external magnetic field and the MHD interaction parameter than in [1–3]. It is shown that the evolution of the free surface is described by the KdV-Burgers or KdV equations with a dissipative perturbation, and that the propagation velocity of the solitary waves depends on the strength of the external magnetic field.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 177–180, November–December, 1989.  相似文献   

8.
A nonlinear system of equations of hyperbolic type describing the propagation of solitary waves is considered [1]. A solitary wave is characterized in this approximation by two variables — the energy density per unit length measured along its crest, and the direction of the normal to the wave crest. The evolution of a wave described by the system may lead to the appearance of discontinuities, at which there are jumps in the energy density and the direction of the wave crest [2]. To establish the conditions at the discontinuities, a solution describing the interaction of nonparallel solitons [3, 4] is used. The obtained conditions are used to solve the problem of the decay of an arbitrary discontinuity in terms of soliton variables.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 87–93, May–June, 1984.I thank A. G. Kulikovskii and A. A. Barmin for helpful discussions and valuable comments in the preparation of the paper.  相似文献   

9.
The plane steady motion of a stratified ideal incompressible fluid in a gravity field is examined. Considering that the parameter characterizing the fluid particles — their density 0 — is constant along the streamline, it is convenient to take the stream function as one of the independent variables and, in view of the presence of the gravity force, the Cartesian coordinate as the other. In this study, on the basis of Lavrent'eva's equation [1, 2, 3], the differential equation is derived for a single unknown function — the vertical displacement of the streamline y(y0, x), where y0 is its initial position and x is the horizontal coordinate. The particular solutions corresponding to a wave guide, cnoidal and solitary waves and, moreover, waves of the type corresponding to a smooth ascent to a new level are presented. A similar coordinate system was used in [4], but there the problem was reduced to a system of partial differential equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 83–87, September–October, 1986.The authors are grateful to A. A. Barmin for discussing their results.  相似文献   

10.
The propagation and stability of nonlinear waves in a viscous compressible fluid with relaxation that satisfies a Theological equation of state of Oldroyd type are investigated. An equation that describes the structure of the wave perturbations and its evolution is derived subject to the condition of balance of the nonlinear dissipative and relaxation effects, and its solutions of the solitary wave type are analyzed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 31–35, May–June, 1993.  相似文献   

11.
The existence of traveling solitary waves, the products of modulation instability in a cold quasi-neutral plasma, is considered. Solitary waves of this type (solitary wave trains) are formed as a result of bifurcation from a nonzero wave number of the linear wave spectrum. It is shown that the complete system of equations describing the wave process in a cold plasma has solutions of the solitary wave train type, at least when the undisturbed magnetic field is perpendicular to the wave front. Sufficient conditions of existence of solitary wave trains in weakly dispersive media are also formulated.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 154–161, September–October, 1996.  相似文献   

12.
The wave processes in a system described by a fourth-order partial differential equation with Burgers-Korteweg-de Vries nonlinearity are considered. The initial equation is reduced to a dynamical system of three equations, which is analyzed by means of a numerical method. It is shown that the equation for the waves in dissipative-dispersive systems with instability has solutions in the form of solitary waves and wave fronts.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 99–104, March–April, 1989.  相似文献   

13.
The propagation of slow symmetrical small-amplitude body waves in a cylindrical magnetic tube is investigated on the basis of the nonlinear equation obtained in [3, 4]. The breaking of periodic disturbances of a certain type in a finite time is numerically demonstrated. It is noted that the equation in question does not have solutions in the form of solitary waves.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 81–84, January–February, 1990.The author is grateful to M. S. Ruderman for formulating the problem and to V. B. Baranov for his interest in the work.  相似文献   

14.
The propagation of nonstationary weak shock waves in a chemically active medium is essentially dispersive and dissipative. The equations for short-wavelength waves for such media were obtained and investigated in [1–4]. It is of interest to study quasimonochromatic waves with slowly varying amplitude and phase. A general method for obtaining the equations for modulated oscillations in nonlinear dispersive media without dissipation was proposed in [5–8]. In the present paper, for a dispersive, weakly nonlinear and weakly dissipative medium we derive in the three-dimensional formulation equations for waves of short wavelength and a Schrödinger equation, which describes slow modulations of the amplitude and phase of an arbitrary wave. The coefficients of the equations are particularized for the considered gas-liquid mixture. Solutions are obtained for narrow beams in a given defocusing medium as well as linear and nonlinear solutions in the neighborhood of a diffraction beam. A solution near a caustic for quasimonochromatic waves was found in [9].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 133–143, January–February, 1980.  相似文献   

15.
The propagation of long weakly nonlinear waves in an atmospheric waveguide is considered. A model system of Kadomtsev-Petviashvili equations [1], which describes the propagation of such waves, is derived. In the case of one excited wave mode the system of model equations goes over into the Kadomtsev-Petviashvili equation, in which, however, the variables x and t are interchanged. The reasons for this are clarified. In the two-dimensional case an approximate solution of the model equations is constructed, and steady nonlinear waves and their interaction in a collision are considered. The results of a numerical verification of the stability of the approximate steady solutions and of the solution to the problem of decay of the wave into quasisolitons are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 151–157, May–June, 1988.  相似文献   

16.
Waves mentioned in the title were revealed in composite materials that are described by the microstructural theory of the second order — the theory of two-phase mixtures. For harmonic periodic waves, a mixture is always a dispersive medium. This medium admits existence of other waves — waves with profiles described by functions of mathematical physics (the Chebyshov–Hermite, Whittaker, Mathieu, and Lamé functions). If the initial profile of a plane wave is chosen in the form of the Chebyshev–Hermite or Whittaker function, then the wave may be regarded as an aperiodic solitary wave. The dispersivity of a mixture as a nonlinear frequency dependence of phase velocities transforms for nonperiodic solitary waves into a nonlinear phase-dependence of wave velocities. This and some other properties of such waves permit us to state that these waves fall into a new class of waves in materials, which is intermediate between the classical simple waves and the classical dispersion traveling waves. The existence of these new waves is proved in a computer analysis of phase-velocity-versus-phase plots. One of the main results of the interaction study is proof of the existence of this interaction itself. Some features of the wave interaction — triplets and the concept of synchronization — are commented on  相似文献   

17.
Using the example of surface waves in a heavy liquid, the article discusses the propagation of a solitary wave in a nonhomogeneous medium. Ananalysis is made of processes of the decomposition of a wave into solitary waves, as a function of differences in the depth.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 80–85, November–December, 1971.The author thanks A. V. Gaponov, A. G. Litvak, and L. A. Ostrovskii for their evaluation of the results of the work.  相似文献   

18.
One component of the solution to the problem of flow around a corner within the scope of magnetohydrodynamics, with the interception or stationary reflection of magnetohydrodynamic shock waves, and also steady-state problems comprising an ionizing shock wave, is the steady-state solution of the equations of magnetohydrodynamics, independent of length but depending on a combination of space variables, for example, on the angle. The flows described by these solutions are called stationary simple waves; they were considered for the first time in [1], where the behavior of the flow was investigated in stationary rotary simple waves, in which no change of density occurs. For a magnetic wave, of parallel velocity, the first integrals were found and the solution was reduced to a quadrature. The investigations and the applications of the solutions obtained for a qualitative construction of the problems of streamline flow were continued in [2–8]. In particular, problems were solved concerning flow around thin bodies of a conducting ideal gas. The general solution of the problem of streamline flow or the intersection of shock waves was not found because stationary simple waves with the magnetic field not parallel to the flow velocity were not investigated. The necessity for the calculation of such a flow may arise during the interpretation of the experimental results [9] in relation to the flow of an ionized gas. In the present paper, we consider stationary simple waves with the magnetic field not parallel to the flow velocity. A system of three nonlinear differential equations, describing fast and slow simple waves, is investigated qualitatively. On the basis of the pattern constructed of the behavior of the integral curves, the change of density, magnetic field, and velocity are found and a classification of the waves is undertaken, according to the nature of the change in their physical quantities. The relation between waves with outgoing and incoming characteristics is explained. A qualitative difference is discovered for the flow investigated from the flow in a magnetic field parallel to the flow velocity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 130–138, September–October, 1976.The author thanks A. A. Barmin and A. G. Kulikovskii for constant interest in the work and for valuable advice.  相似文献   

19.
The problem of the existence and dynamical stability of solitary wave solutions to a fifth-order evolution equation, generalizing the well-known Korteweg-de Vries equation, is treated. The theoretical framework of the paper is largely based on a recently developed version of positive operator theory in Fréchet spaces (which is used for the existence proof) and the theory of orbital stability for Hamiltonian systems with translationally invariant Hamiltonians. The validity of sufficient conditions for stability are established. The shape of solitary waves under analysis are determined by a numerical solution of the boundary-value problem followed by a correction using the Picard method of 4–12 orders of accuracy.  相似文献   

20.
The propagation of weak shock waves and the conditions for their existence in a gas-liquid medium are studied in [1]. The article [2] is devoted to an examination of powerful shock waves in liquids containing gas bubbles. The possibility of the existence in such a medium of a shock wave having an oscillatory pressure profile at the front is demonstrated in [3] based on the general results of nonlinear wave dynamics. It is shown in [4, 5] that a shock wave in a gas-liquid mixture actually has a profile having an oscillating pressure. The drawback of [3–5] is the necessity of postulating the existence of the shock waves. This is connected with the absence of a direct calculation of the dissipative effects in the fundamental equations. The present article is devoted to the theoretical and experimental study of the structure of a shock wave in a gas-liquid medium. It is shown, within the framework of a homogeneous biphasic model, that the structure of the shock wave can be studied on the basis of the Burgers-Korteweg-de Vries equation. The results of piezoelectric measurements of the pressure profile along the shock wave front agree qualitatively with the theoretical representations of the structure of the shock wave.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 65–69, May–June, 1973.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号