首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract— Photooxidation, whether initiated by an endogenous or exogenous sensitizer, is an important mechanism in light induced damage to the lens. One of the substrates for this damage is lens protein. A porphyrin sensitizer which binds to lens proteins [ mesotetra ( p -sulfonatophenyl) porphyrin (TPPS)] was found to photooxidize Skh-2 pigmented mice lens protein in vivo. Uroporphyrin, a model for a non-binding photosensitizer, did not induce photooxidative damage to the mouse lens.
The radioprotector 3-amino-2-hydroxypropyl phosphorothioate (WR-77913) was investigated as an agent to retard or negate in vivo photooxidative damage to the lens. Intraperitoneal injections of WR-77913 prior to irradiation reduced the TPPS induced photodestruction of lens protein in Skh-2 pigmented mice.
The mechanism of protection was also investigated. Thiols were found to quench both the triplet state of porphyrins and the reactive intermediate singlet oxygen on the order of 105 and 106 M -1 s1 respectively. These are probably not fast enough to explain most of the protection afforded by thiols. An additional mechanism may be the accelerated photobleaching of porphyrins by thiols which protects tissue by reducing the absorptions due to the porphyrins.  相似文献   

2.
Hematoporphyrin as a photosensitizer of tumors   总被引:1,自引:0,他引:1  
Abstract— The ability of hematoporphyrin (Hp) to act as a photosensitizer of cells in vitro or in vivo is a matter of dispute, while hematoporphyrin derivative (Hpd), a mixture of porphyrins including hematoporphyrin, has been consistently found to be an effective photosensitizer both in vitro and in vivo. Until recently the actual component of the Hpd mixture responsible for these effects had not been identified. We have found that those preparations of Hp which contain, as an impurity, a porphyrin similar to that found to be responsible for the tumor photosensitizing ability of Hpd, may be effective photosensitizers of tumors but are generally of low efficacy. This material accounts for the entire photosensitizing activity of both Hp and Hpd in the SMT-F mammary carcinoma in DBA/2 HeHa mice.  相似文献   

3.
Previous studies have shown that mesotetra(p-sulfonatophenyl)porphine (TPPS) binds to lens proteins. This characteristic should increase the residence time of the sensitizer in the lens and therefore enhance the probability of inducing photooxidative damage to that tissue in vivo. Subsequent in vivo studies have verified that contention. The present studies were performed to determine the effect of such binding on the spectroscopy and photophysics of the porphyrins. It was found that the binding of TPPS (1) quenches the fluorescence of lens proteins, (2) causes a shift in the ground state absorption spectra, fluorescence excitation spectra and the triplet excited state spectrum of TPPS to longer wavelengths and (3) results in an increase in the triplet state lifetime of TPPS. In the presence of the isolated crystallins the average triplet lifetime increases in the following order: gamma less than beta less than alpha.  相似文献   

4.
Hypericin is the active ingredient in the over the counter antidepressant medication St. John's Wort. Hypericin produces singlet oxygen and other excited state intermediates that indicate it should be a very efficient phototoxic agent in the eye. Furthermore it absorbs in the UV and visible range, which means it can potentially damage both the lens and the retina. Lens alpha-crystallin, isolated from calf lenses, was irradiated in the presence of hypericin (5 x 10(-5) M, 10 mM ammonium bicarbonate, pH 7.0) and in the presence and absence of light (> 300 nm, 24 mW/cm2). Hypericin-induced photosensitized photopolymerization as assessed by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Further analysis of the oxidative changes occurring in alpha-crystallin using mass spectrometry showed specific oxidation of methionine, tryptophan and histidine residues, which increased with irradiation time. Hypericin did not damage the lens protein in the dark. Damage to alpha-crystallin could undermine the integrity of the lens directly by protein denaturation and indirectly by disturbing chaperone function. Therefore, in the presence of light, hypericin can induce changes in lens protein that could lead to the formation of cataracts. Appropriate precautions should be taken to protect the eye from intense sunlight while on this antidepressant medication.  相似文献   

5.
Abstract— Previous studies have shown that the triplet state lifetimes of various porphyrins are increased by several orders of magnitude when they are bound to lens proteins. Flash photolysis studies of me-sotetra ( p -sulfonatophenyl)porphyrin (TPPS) on intact bovine lenses indicated a biexponential decay of the triplet state with lifetimes of 160 μs and 1.6 ms. Here we extend those measurements to TPPS associated with intact human lenses. Steady-state fluorescence measurements indicate that TPPS binds to both young and old human lenses. In an intact young human lens, the TPPS triplet state is observed to decay biexponentially with lifetimes of 50 and 680 μs. As the age of the lens increases, the lifetime of the shorter-lived component lengthens while that of the longer-lived component decreases slightly. In older human lenses, the two lifetimes coalesce and the triplet decay exhibits purely monoexponential behavior. These photophysical characteristics apparently are due to age-related modification(s) of the protein in the human lens resulting in an increasingly more homogeneous environment around the porphyrin.  相似文献   

6.
Crystallin proteins are responsible for maintaining lens transparency and allowing the lens to focus light undistorted onto the retina. The α‐crystallins are the major lens crystallins, and function as both structural proteins and chaperones to protect all lens proteins from damage leading to lens deterioration. Because lens crystallin proteins do not turn over, the damage they accumulate can lead to cataracts, the world’s leading cause of blindness. Photosensitizing porphyrins can accumulate in the eye through either endogenous metabolism or through therapeutic or diagnostic procedures. Porphyrin buildup exacerbates lens aging through increased levels of singlet oxygen, resulting in protein polymerization and amino acid residue alteration. Tryptophans oxidize to kynurenine and N‐formylkynurenine (NFK) causing irreversible changes in the refractive index of the normally transparent lens, leading to development of cataracts. Additionally, NFK is itself a photosensitizer, and its presence exacerbates lens deterioration. This work uses anti‐NFK antiserum to study porphyrin‐facilitated photooxidation of α‐crystallin tryptophan residues. In vitro experiments show that four biologically interesting porphyrins mediate α‐crystallin polymerization and accumulation of both protein radicals and NFK. Confocal microscopy of cultured human lens epithelial cells indicates that while all four porphyrins photosensitize cellular proteins, not all oxidize the tryptophans of cellular α‐crystallin to NFK.  相似文献   

7.
Thirty-two glycoconjugated porphyrins were synthesized by a modification of Lindsey method in the presence of Zn(OAc)(2).2H(2)O as a template. The Zn(2+) ion template strategy improved the yield about three-fold in the case of meta-substituted tetraphenylporphyrins. In addition, free-base porphyrins were obtained almost quantitatively by demetalation with 4 M HCl. Sixteen deacetylated glycoconjugated porphyrins were tested as candidate photodynamic therapy (PDT) drugs using HeLa cells. Most of the deacetylated glycoconjugated porphyrins showed higher cellular uptake than tetraphenylporphyrin tetrasulfonic acid (TPPS), and 5,10,15,20-tetrakis[4-(beta-D-arabinopyranosyloxy)phenyl]porphyrin (p-5d) in particular showed 18.5-fold higher uptake than TPPS. The photocytotoxicity of 5,10,15,20-tetrakis[4-(beta-D-glucopyranosyloxy)phenyl]porphyrin (p-5a), p-5d and TPPS was examined with HeLa cells, using a light dose of 16 J/cm(2). These photosensitizers had no cytotoxicity in the dark, but their photocytotoxicity increased in the order of TPPS < p-5a < p-5d. These results suggest p-5d is a good candidate for a PDT drug.  相似文献   

8.
The DNA damage in intact Staphylococcus aureus and E. coli cells induced by photosensitized deuteroporphyrin or hemin is described. Treatment of S. aureus cultures with hemin or photosensitized deuteroporphyrin (Dp) caused time-dependent changes in the plasmidial DNA profiles. The major observation was the disappearance of the plasmid supercoiled fraction. The chromosomal DNA was also affected by hemin and by photosensitized Dp, since its degradation products were detected after exposing the bacterial cells to the porphyrin drugs. Photosensitization of E. coli cells, pretreated with Dp and polymyxin B nonapeptide (PMBNP), also resulted in plasmidial damage. No such damage occurred when E. coli cultures were treated with hemin and PMBNP. The above results can be tightly correlated with the antimicrobial action of porphyrins. Their damage to the bacterial DNA seems to reflect one of the in vivo effects of these porphyrins.  相似文献   

9.
Photodynamic therapy (PDT) utilizes either hematoporphyrin derivative (Hpd) or a purified form of Hpd termed DHE, as photosensitizers for treatment of a variety of solid tumors in man. The reasons for long retention of these porphyrins in a wide range of histologically diverse tumors remain obscure. We have found that the RIF fibrosarcoma and SMT-F mammary carcinoma in mice, a intrapancreatic tumor in the hamster and a tumor removed from a patient with a myxoid sarcoma, make take up Hpd or DHE by endocytosis. On the other hand the RIF tumor cells in vitro show a tendency for selective uptake and retention of the more hydrophobic components of the mixture.  相似文献   

10.
Abstract— The experimental radioprotective agentsS–2-(3-aminopropylamino) ethyl phosphorothioate(WR–2721) and 3-amino-2-hydroxypropyl phosphorothioate(WR–77913) are also protective against photosensitized oxidation. They reduce porphyrin-induced photopolymerization of lens cytosol proteins in vitro, and phototoxic damage to mouse skin in vivo. The phototoxic dose modification factor (DMF) was 1.5 which is similar to that found in ionizing radiation. Part of the mechanism by which sulfhydryls afford this protection is by accelerating photobleaching of the porphyrins.  相似文献   

11.
Abstract— The cytotoxicity that ensues following photosensitization by hematoporphyrin derivative (Hpd) is attributed to production of singlet oxygen. Many of the cellular end points reported to be affected are localized to membranes, hydrophobic environments conducive to partitioning of hydrophobic porphyrins in Hpd. In order to test the hypothesis that efficacy of Hpd-induced photosensitization is enhanced by its ability to freely enter cells or subcellular organelles, we immobilized Hpd on a sepharose support. This immobilized reagent was found to produce 1O2 when photoradiated, in yields similar to those observed for Hpd in solution, as evidenced by the bleaching of p -nitrosodimethylaniline in the presence of imidazole. The immobilized Hpd was capable of photosensitizing, i.e. inhibit, cytochrome c oxidase activity in intact mitochondrial membranes and in aqueous solution. However, enzymes located on the interior of mitochondrial membranes (F0F1 ATP synthase and succinate dehydrogenase), in the mitochondrial matrix (malate dehydrogenase), or on the inside of the plasma membrane, (Na++ K+)- ATPase, were unaffected by immobilized Hpd plus photoradiation compared to free Hpd. The results suggest that photosensitization by Hpd most likely arises from entry of the photosensitizer into the biological membrane, although proteins on the exterior membrane surface may be susceptible to damage by 1O2 produced in proximity to their location.  相似文献   

12.
Abstract— Photofrin II (PF-II) is the commercial name of the active photosensitizer which is used in photodynamic therapy of cancer. The effect of the composition of lipid membranes on the binding of PF-II was studied and compared to hematoporphyrin derivative (Hpd), which is a complex mixture of porphyrins and from which PF-II is separated. We find that increasing the content of cholesterol in the bilayer decreases the partitioning of PF-II into the bilayer, similar to what we have found earlier with Hpd. However, inserting DMPC or DPPC into the membrane, which was shown to decrease the binding of Hpd, causes the opposite trend with PF-H. A membrane fluidizer such as benzyl alcohol also has different effects on the membrane binding of Hpd and PF-II. The rate of binding of PF-II to a lipid membrane is about 10 times lower than that of Hpd. These results as well as I- quenching of the fluorescence of the two porphyrins indicate that PF-II is immersed less homogeneously and deeper in the bilayer than Hpd. The unique additive-dependent binding of PF-II to lipid membranes calls for care in using Hpd as a model photosensitizer.  相似文献   

13.
Previous steady state and time resolved spectroscopic studies on porphyrins have shown that the triplet lifetimes of those sensitizers that bind to lens proteins are lengthened by several orders of magnitude. Presented here is an extension of this experiment to measure these transients in an intact bovine lens. As demonstrated by steady state fluorescence spectroscopy and flash photolysis, mesotetra (p-sulfonatophenyl)porphyrin (TPPS) binds to lens proteins. In air-saturated aqueous solution, TPPS has a triplet lifetime of 2 microseconds. In an intact bovine lens the triplet state decayed via biexponential kinetics with lifetimes of 0.16 and 1.6 microseconds. In addition to a lengthening of the lifetime there was a red shift in the triplet transient spectra of 10-20 nm of the porphyrin in the intact lenses.  相似文献   

14.
15.
The subcellular localization sites of TPPS4 and TPPS1 and the subsequent cellular site damage during photodynamic therapy were investigated in CT-26 colon carcinoma cells using spectroscopic and electron microscopy techniques. The association of both porphyrins with the mitochondria was investigated and the implications of this association on cellular functions were determined. Spectrofluorescence measurements showed that TPPS4 favors an aqueous environment, while TPPS1 interacts with lipophilic complexes. The subcellular localization sites of each sensitizer were determined using spectral imaging. Mitochondrial-CFP transfected cells treated with porphyrins revealed localization of TPPS1 in the peri-nuclear region, while TPPS4 localized in the mitochondria, inducing structural damage and swelling upon irradiation, as shown by transmission electron microscopy. TPPS4 fluorescence was detected in isolated mitochondria following irradiation. The photodamage induced a 38% reduction in mitochondrial activity, a 30% decrease in cellular ATP and a reduction in Na(+)/K(+)-ATPase activity. As a result, cytosolic concentrations of Na(+) and Ca(2+) increased, and the level of K(+) decreased. In contrast, the lipophilic TPPS1 did not affect mitochondrial structure or function and ATP content remained unchanged. We conclude that TPPS4 induces mitochondrial structural and functional photodamage resulting in an altered cytoplasmic ion concentration, while TPPS1 has no effect on the mitochondria.  相似文献   

16.
Abstract The lysis of phosphatidylcholine (PC) liposomes was sensitized to visible light (>500nm) by hematoporphyrin (HP) incorporated in the liposomes (0.09-1.5%, wt/wt) or in the external buffer (1-15 μM). The lytic mechanism changed from the Type II pathway mediated by singlet oxygen (1O2) at low HP concentrations to the anoxic, Type I pathway at high HP concentrations. Spectral measurements of HP in aqueous and organic solvents indicate that the HP was not aggregated (monomers and/or dimers) for Type II sensitization and aggregated for Type I conditions. High concentrations of azide (>0.1 M) or DABCO (>0.5 M) were protective with high HP concentration under oxic and anoxic conditions, which cannot involve the scavenging of 1O2. Feasible protective mechanisms are quenching of the HP triplet state by high azide and repair of the damaged membrane by DABCO via an electron transfer process. There was significant protection against lysis under Type I conditions by low concentrations of ferricyanide (>1 mM), indicative of an electron transfer mechanism. The incorporation of 22 mol % cholesterol in PC liposomes with 1% HP had no effect on the lytic efficiency for oxic and anoxic conditions. Dipalmitoylphosphatidylcholine liposomes incorporating 1% HP showed negligible photosensitized lysis at 50°C compared with PC liposomes with 1% HP at 25°C. The promotion of photosensitized lysis by hydrodynamic agitation observed in prior work with methylene blue (Grossweiner and Grossweiner, 1982) was significant with HP sensitization for both Type I and Type II conditions. Actinometry with PC liposomes incorporating 1% HP indicated that photosensitized lysis was very inefficient, requiring many absorbed quanta per lysed liposome. Preliminary experiments with crude hematoporphyrin derivative (Hpd) showed similar concentration effects on lytic efficiency, where PC liposomes incorporating 0.1% (wt/wt) Hpd were strongly sensitized by oxygen, whereas sensitization by oxygen was insignificant with 3.1% Hpd. The results with HP and crude Hpd indicate that lytic damage in a biomembrane does not necessarily require oxygenation.  相似文献   

17.
The neurotoxic effect of tetraphenylporphinesulfonate (TPPS4) and a hematoporphyrin derivative (HPD, Photosan) has been studied in organotypic cultures of chick dorsal root ganglia maintained in a semi-solid culture medium. The changes in two characteristics of neurite outgrowth, the mean radial length of neurites growing out from the ganglia and the area of neurite outgrowths, are used as parameters to evaluate the toxic effect. The porphyrins are tested over the concentration range 10-160 micrograms ml-1. TPPS4 is slightly more toxic than the HPD Photosan. The median inhibitory concentration (IC50) for TPPS4 is 45-50 micrograms ml-1 and for the HPD Photosan 50-60 micrograms ml-1, respectively. Nevertheless, the toxicity of the two drugs is relatively low compared to that of commonly used anticancer drugs, such as cisplatin or taxol.  相似文献   

18.
Fluoroquinolone (FLQ) drugs are a potent family of antibiotics used to treat infections including ocular infections. To determine if these antibiotics may be phototoxic to the eye, we exposed human lens epithelial cells to 0.125–1 mm FLQs (ciprofloxacin [Cipro], lomefloxacin [Lome], norfloxacin [Nor] and ofloxacin [Ofl]), the precursor quinolone nalidixic acid (Nalid) and UVA radiation (2.5 J cm−2). Based on fluorescence confocal microscopy, FLQs are diffused throughout the cytoplasm and preferentially located in the lysosomes of lens epithelial cells. Neither FLQ exposure alone nor UVA exposure alone reduced cell viability. However, with exposure to UVA radiation the FLQs studied (Cipro, Nor, Lome and Ofl) induced a phototoxic reaction that included necrosis, apoptosis, loss of cell viability as measured by MTS, and membrane damage as determined by the lactate dehydrogenase assay. Both Nalid and all FLQs studied (Cipro, Nor, Lome and Ofl) photopolymerized the lens protein α-crystallin. Phototoxic damage to lens epithelial cells and/or α-crystallin will lead to a loss of transparency of the human lens. However, if precautions are taken to filter all UV radiation from the eye while taking these antibiotics, eye damage may be prevented.  相似文献   

19.
Determining whether alpha-crystallin (the major lens protein) affects the photophysics of hypericin, a photosensitizing agent found in various plants, such as St. John's Wort, is important. Hypericin shows promise in cancer and human immunodeficiency virus therapy but may harm individuals taking St. John's Wort extracts (for mild to moderate depression). Hypericin causes hypericism, which is characterized by cellular damage in light-exposed areas. Ocular tissues are at risk for photosensitized damage; thus, we investigated the effects on hypericin photophysics by alpha-crystallin. We measured the transient absorption spectra and the 1270 nm luminescence of singlet (1Deltag) oxygen produced from hypericin in the presence of alpha-crystallin. alpha-Crystallin complexes hypericin, extending the lifetime of its triplet excited state; the Stern-Volmer slope is negative, but not linear, after a saturation curve. Damage to the lens protein by hypericin is known to occur via singlet oxygen, which oxidizes methionine, tryptophan and histidine residues. Binding to alpha-crystallin does not inhibit singlet oxygen formation by hypericin. alpha-Crystallin reacts with singlet oxygen with a rate constant of 1.3 x 10(8) M(-1) s(-1). Thus, we anticipate that hypericin will be an effective photosensitizer in the lens.  相似文献   

20.
Abstract— Human cells of the line NHIK 3025 were exposed to hematoporphyrin derivative (Hpd) and light and analysed with respect to; (i) the mobility of membrane proteins as determined by electron spin resonance measurements of a protein-bound spin label, (ii) fluorescence excitation spectra, (iii) relative number of DTNB-reactive SH-groups on their surface and in sonicated cell homogenates, (iv) survival, and (v) morphologic appearance as seen by ordinary phase contrast microscopy. A significant fraction of the porphyrins bound to the outer cell membrane was in close contact with proteins. 5,5'-Dithiobis-2-nitrobenzoic acid reactive SH-groups on the outer cell membrane were very sensitive to the treatment with Hpd + light and were degraded according to non-exponential kinetics. When the cells were irradiated after spin labelling, the labelled proteins became less mobile during the irradiation, indicating protein cross linking. Irradiation before spinlabelling resulted in a selective degradation of low-mobility proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号