首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a linear integral equation, which arises when solving the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a double layer potential, with a hypersingular integral treated in the sense of Hadamard finite value. We consider the case in which the exterior or interior problem is solved in a domain whose boundary is a closed smooth surface and the integral equation is written over that surface. A numerical scheme for solving the integral equation is constructed with the use of quadrature formulas of the type of the method of discrete singularities with a regularization for the use of an irregular grid. We prove the convergence, uniform over the grid points, of the numerical solutions to the exact solution of the hypersingular equation and, in addition, the uniform convergence of the values of the approximate finite-difference derivative operator on the numerical solution to the values on the projection of the exact solution onto the subspace of grid functions with nodes at the collocation points.  相似文献   

2.
A piecewise-homogeneous elastic orthotropic plate, reinforced with a finite inclusion, which meets the interface at a right angle and is loaded with shear forces, is considered. The contact stresses along the contact line are determined, and the behaviour of the contact stresses in the neighbourhood of singular points is established. By using the methods of the theory of analytic functions, the problem is reduced to a singular integro-differential equation in a finite section. Using an integral transformation, a Riemann problem is obtained, the solution of which is presented in explicit form.  相似文献   

3.
In the contact problem of a rigid flat-ended punch on an elastic half-plane, the contact stress under punch is studied. The angle distribution for the stress components in the elastic medium under punch is achieved in an explicit form. From obtained singular stress distribution, the punch singular stress factor (abbreviated as PSSF) is defined. A fundamental solution for the multiple flat punch problems on the elastic half-plane is investigated where the punches are disconnected and the forces applied on the punches are arbitrary. The singular integral equation method is suggested to obtain the fundamental solution. Further, the contact problem for rigidly connected punches on an elastic half-plane is considered. The solution for this problem can be considered as a superposition of many particular fundamental solutions. The resultant forces on punches are the undetermined unknowns in the problem, which can be evaluated by the condition of relative descent between punches. Finally, the resultant forces on punches can be determined, and the PSSFs at the corner points can be evaluated. Numerical examples are given.  相似文献   

4.
An initial problem is considered for an ordinary singularly perturbed integro-differential equation with a nonlinear integral Fredholm operator. The case when the reduced equation has a smooth solution is investigated, and the solution to the reduced equation with a corner point is analyzed. The asymptotics of the solution to the Cauchy problem is constructed by the method of boundary functions. The asymptotics is validated by the asymptotic method of differential inequalities developed for a new class of problems.  相似文献   

5.
A mixed boundary value problem for a singularly perturbed reaction-diffusion equation in a square is considered. A Neumann condition is specified on one side of the square, and a Dirichlet condition is set on the other three. It is assumed that the coefficient of the equation, its right-hand side, and the boundary values of the desired solution or its normal derivative on the sides of the square are smooth enough to ensure the required smoothness of the solution in a closed domain outside the neighborhoods of the corner points. No compatibility conditions are assumed to hold at the corner points. Under these assumptions, the desired solution in the entire closed domain is of limited smoothness: it belongs only to the Hölder class C μ, where μ ∈ (0, 1) is arbitrary. In the domain, a nonuniform rectangular mesh is introduced that is refined in the boundary domain and depends on a small parameter. The numerical solution to the problem is based on the classical five-point approximation of the equation and a four-point approximation of the Neumann boundary condition. A mesh refinement rule is described under which the approximate solution converges to the exact one uniformly with respect to the small parameter in the L h norm. The convergence rate is O(N ?2ln2 N), where N is the number of mesh nodes in each coordinate direction. The parameter-uniform convergence of difference schemes for mixed problems without compatibility conditions at corner points was not previously analyzed.  相似文献   

6.
D. Medková 《Acta Appl Math》2011,116(3):281-304
A weak solution of the Neumann problem for the Stokes system in Sobolev space is studied in a bounded Lipschitz domain with connected boundary. A solution is looked for in the form of a hydrodynamical single layer potential. It leads to an integral equation on the boundary of the domain. Necessary and sufficient conditions for the solvability of the problem are given. Moreover, it is shown that we can obtain a solution of this integral equation using the successive approximation method. Then the consequences for the direct boundary integral equation method are treated. A solution of the Neumann problem for the Stokes system is the sum of the hydrodynamical single layer potential corresponding to the boundary condition and the hydrodynamical double layer potential corresponding to the trace of the velocity part of the solution. Using boundary behavior of potentials we get an integral equation on the boundary of the domain where the trace of the velocity part of the solution is unknown. It is shown that we can obtain a solution of this integral equation using the successive approximation method.  相似文献   

7.
A mixed boundary value problem for a singularly perturbed elliptic convection-diffusion equation with constant coefficients in a square domain is considered. Dirichlet conditions are specified on two sides orthogonal to the flow, and Neumann conditions are set on the other two sides. The right-hand side and the boundary functions are assumed to be sufficiently smooth, which ensures the required smoothness of the desired solution in the domain, except for neighborhoods of the corner points. Only zero-order compatibility conditions are assumed to hold at the corner points. The problem is solved numerically by applying an inhomogeneous monotone difference scheme on a rectangular piecewise uniform Shishkin mesh. The inhomogeneity of the scheme lies in that the approximating difference equations are not identical at different grid nodes but depend on the perturbation parameter. Under the assumptions made, the numerical solution is proved to converge ?-uniformly to the exact solution in a discrete uniform metric at an O(N ?3/2ln2 N) rate, where N is the number of grid nodes in each coordinate direction.  相似文献   

8.
We study the exceptional case of the characteristic singular integral equation with Cauchy kernel in which its coefficients admit zeros or singularities of complex orders at finitely many points of the contour. By reduction to a linear conjugation problem, we obtain an explicit solution formula and solvability conditions for this equation in weighted Hölder classes.  相似文献   

9.
A mathematical model is given for the magnetohydrodynamic (MHD) pipe flow as an inner Dirichlet problem in a 2D circular cross section of the pipe, coupled with an outer Dirichlet or Neumann magnetic problem. Inner Dirichlet problem is given as the coupled convection‐diffusion equations for the velocity and the induced current of the fluid coupling also to the outer problem, which is defined with the Laplace equation for the induced magnetic field of the exterior region with either Dirichlet or Neumann boundary condition. Unique solution of inner Dirichlet problem is obtained theoretically reducing it into two boundary integral equations defined on the boundary by using the corresponding fundamental solutions. Exterior solution is also given theoretically on the pipe wall with Poisson integral, and it is unique with Dirichlet boundary condition but exists with an additive constant obtained through coupled boundary and solvability conditions in Neumann wall condition. The collocation method is used to discretize these boundary integrals on the pipe wall. Thus, the proposed procedure is an improved theoretical analysis for combining the solution methods for the interior and exterior regions, which are consolidated numerically showing the flow behavior. The solution is simulated for several values of problem parameters, and the well‐known MHD characteristics are observed inside the pipe for increasing values of Hartmann number maintaining the continuity of induced currents on the pipe wall.  相似文献   

10.
We find a closed-form classical solution of the homogeneous wave equation with Cauchy conditions, a boundary condition on the lateral boundary, and a nonlocal integral condition involving the values of the solution at interior points of the domain. A classical solution is understood as a function that is defined everywhere in the closure of the domain and has all classical derivatives occurring in the equation and conditions of the problem. The derivatives are defined via the limit values of finite-difference ratios of the function and corresponding increments of the arguments.  相似文献   

11.
For the computation of the singular behavior of an elastic field near a three-dimensional vertex subject to displacement boundary conditions we use a boundary integral equation of the first kind whose unknown is the boundary stress. Localization at the vertex and Mellin transformation yield a one-dimensional integral equation on a piecewise circular curve γ in IR3 depending holomorphically on the complex Mellin parameter. The corresponding spectral points and packets of generalized eigenvectors characterize the desired stress field and are computed by a spline-Galerkin method with graded meshes at the corner points of the curve γ. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
We consider the Tricomi problem for the Lavrent’ev-Bitsadze equation for the case in which the elliptic part of the boundary is part of a circle. For the homogeneous equation, we introduce a new class of solutions that are not continuous at the corner points of the domain and construct nontrivial solutions in this class in closed form. For the inhomogeneous equation, we introduce the notion of an n-regular solution and prove a criterion for the existence of such a solution.  相似文献   

13.
The surface integral equation for a spatial mixed boundary value problem for the Helmholtz equation is considered. At a set of chosen points, the equation is replaced with a system of algebraic equations, and the existence and uniqueness of the solution of this system is established. The convergence of the solutions of this system to the exact solution of the integral equation is proven, and the convergence rate of the method is determined.  相似文献   

14.
The article considers the determination of the boundary of a two-dimensional region in which an initial boundary-value problem for the heat equation is defined, given the solution of the problem for all time instants at some points of the region. The direct problem is reduced to an integral equation, and numerical solutions of the inverse problem are obtained for the case when the boundary is an ellipse. We investigate the sensitivity of the observed variables to the location (relative to the boundary) of the point where the right-hand side of the equation is specified. Translated from Prikladnaya Matematika i Informatika, No. 30, 2008, pp. 18–24.  相似文献   

15.
A stress recovery procedure, based on the determination of the forces at the mesh points using a stiffness matrix obtained by the finite element method for the variational Lagrange equation, is described. The vectors of the forces reduced to the mesh points are constructed for the known stiffness matrices of the elements using the displacements at the mesh points found from the solution of the problem. On the other hand, these mesh point forces are determined in terms of the unknown forces distributed over the surface of an element and given shape functions. As a result, a system of Fredholm integral equations of the first kind is obtained, the solution of which gives these distributed forces. The stresses at the mesh points are determined for the values of these forces found on the surfaces of the finite element mesh (including at the mesh points) using the Cauchy relations, which relate the forces, stresses and the normal to the surface. The special features of the use of the stress recovery procedure are demonstrated for a plane problem in the linear theory of elasticity.  相似文献   

16.
We determine the boundary of a two-dimensional region using the solution of the external initial boundary-value problem for the nonhomogeneous heat equation. The initial values for the boundary determination include the right-hand side of the equation and the solution of the initial boundary-value problem given for finitely many points outside the region. The inverse problem is reduced to solving a system of two integral equations nonlinear in the function defining the sought boundary. An iterative procedure is proposed for numerical solution of the problem involving linearization of integral equations. The efficiency of the proposed procedure is investigated by a computer experiment.  相似文献   

17.
A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ?+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.  相似文献   

18.
The article considers the mathematical model of a lens antenna in the shape of a homogeneous dielectric torus excited by an axial magnetic dipole. The boundary-value problem for an elliptical differential equation is posed and reduced by the fundamental solution method to an integral equation of 2nd kind over the torus section. A numerical algorithm is proposed, and the numerical results are compared with experimental findings. Translated from Obratnye Zadachi Estestvoznaniya, Published by Moscow University, Moscow, 1997, pp. 109–115.  相似文献   

19.
We study the numerical solution of a linear hypersingular integral equation arising when solving the Neumann boundary value problem for the Laplace equation by the boundary integral equation method with the solution represented in the form of a double layer potential. The integral in this equation is understood in the sense of Hadamard finite value. We construct quadrature formulas for the integral occurring in this equation based on a triangulation of the surface and an application of the linear approximation to the unknown function on each of the triangles approximating the surface. We prove the uniform convergence of the quadrature formulas at the interpolation nodes as the triangulation size tends to zero. A numerical solution scheme for this integral equation based on the suggested quadrature formulas and the collocation method is constructed. Under additional assumptions about the shape of the surface, we prove a uniform estimate for the error in the numerical solution at the interpolation nodes.  相似文献   

20.
The buckling of a pin-ended slender rod subjected to a horizontal end load is formulated as a nonlinear boundary value problem. The rod material is taken to be governed by constitutive laws which are nonlinear with respect to both bending and compression. The nonlinear boundary value problem is converted to a suitable integral equation to allow the application of bounded operator methods. By treating the integral equation as a bifurcation problem, the branch points (critical values of load) are determined and the existence and form of nontrivial solutions (buckled states) in the neighborhood of the branch points is established. The integral equation also affords a direct attack upon the question of uniqueness of the trivial solution (unbuckled state). It is shown that, under certain conditions on the material properties, only the trivial solution is possible for restricted values of the load. One set of conditions gives uniqueness up to the first branch point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号