首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compounds were synthesized in good yields by the condensation reaction of diphenyl α‐aminoalkylphosphonates with 2‐(chloroseleno)‐benzoyl chloride. Their structures were confirmed by spectroscopic methods and microanalyses. The X‐ray analyses showed that the selenium‐containing fused ring has a planar structure and that, by the molecular packing of the unit cells, two adjacent molecules are symmetrically linked to each other through Se(1c) … O=P(1) bonding interactions with an intermolecular Se(1c) … O distance of 2.797 Å. The results of bioassay indicated that some of these compounds possess potent antitumor activities against some human carcinoma cells in vitro. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10:247–254, 1999  相似文献   

2.
In the selenium‐containing heterocyclic title compound {systematic name: N‐[5‐(morpholin‐4‐yl)‐3H‐1,2,4‐diselenazol‐3‐ylidene]benzamide}, C13H13N3O2Se2, the five‐membered 1,2,4‐diselenazole ring and the amide group form a planar unit, but the phenyl ring plane is twisted by 22.12 (19)° relative to this plane. The five consecutive N—C bond lengths are all of similar lengths [1.316 (6)–1.358 (6) Å], indicating substantial delocalization along these bonds. The Se...O distance of 2.302 (3) Å, combined with a longer than usual amide C=O bond of 2.252 (5) Å, suggest a significant interaction between the amide O atom and its adjacent Se atom. An analysis of related structures containing an Se—Se...X unit (X = Se, S, O) shows a strong correlation between the Se—Se bond length and the strength of the Se...X interaction. When X = O, the strength of the Se...O interaction also correlates with the carbonyl C=O bond length. Weak intermolecular Se...Se, Se...O, C—H...O, C—H...π and π–π interactions each serve to link the molecules into ribbons or chains, with the C—H...O motif being a double helix, while the combination of all interactions generates the overall three‐dimensional supramolecular framework.  相似文献   

3.
Pseudo‐ephedrine derived 2‐imino‐1,3‐thiazolidine 1 reacts with tris(diethylamino)phosphane by stepwise replacement of the diethylamino group to give the mono‐, bis‐ and tris(imino)phosphanes 2 , 3 and 4 , respectively, of which 4 could be isolated in pure state. The analogous reaction with diethylamino‐diphenylphosphane affords the imino‐diphenylphosphane 5 . The iminophosphanes react with sulfur or selenium to give the corresponding phosphorus(V) compounds. In contrast, the reaction of the iminophosphanes with oxygen is very slow; anhydrous trimethylamine N‐oxide reacts in the melt with the phosphanes to give the oxides 4(O) and 5(O) . The molecular structures of 4(O) (in mixture with 4 ), 4(Se) , 5(S) and 5(Se) were determined by X‐ray analysis. In all cases the ring‐sulfur and the phosphorus atoms are in cis‐positions at the C=N bonds. The analogous solution structures were determined by 1H, 13C, 15N, 31P and 77Se NMR spectroscopy. In the case of the compounds 5 , 5(O) , 5(S) and 5(Se) the isotope‐induced chemical shifts 1δ14/15N(31P) were determined, using INEPT‐HEED experiments.  相似文献   

4.
Alkylation of ambident thymidine 5′‐O‐(O‐alkyl phosphorothioate) anions by means of 3′‐O‐sulfonylated xylothymidine occurs at both O‐ and S‐nucleophilic centers, and formation of an internucleotide bond is accompanied by the process of elimination. Lack of chemoselectivity and low yields of products discriminate against such an approach as an effective method of stereocontrolled synthesis of P‐chiral oligo(nucleoside phosphorothioate)s. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 91–104, 1999  相似文献   

5.
The synthesis and structures of three new compounds are reported. [Mg2{PhP(Se,O)Se‐Se(O,Se)PPh}2(thf)7(H2O)3] ( 1 ), [Mg{PhP(Se,O)Se‐Se(O,Se)PPh}(thf)3(H2O)] ( 2 ), and [Mn{PhP(Se,O)Se‐Se(O,Se)PPh}(thf)3(H2O)] ( 3 ) were prepared by treatment of Woollins' reagent [PhP(Se)(μ‐Se)]2 with the corresponding hydrated metal acetates.  相似文献   

6.
An ambident O,O‐dialkylphosphoroselenothioate is glycosidated in the presence of boron trifluoride etherate to give both Se‐ and S‐glycosyl‐phosphoroselenothioates, the former predominating. The stereochemical course of this reaction depends on the kind of sugar substrates. By selective oxidation of the mixture of products, the Se‐glycosyl derivative is isolated. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 259–262, 1999  相似文献   

7.
Mol­ecules of the title compound, C16H22O4S, have twofold crystallographic symmetry and are stabilized by strong intra­molecular O—H⋯O hydrogen bonds and very weak inter­molecular C—H⋯O hydrogen bonds, forming layers normal to the c axis. The mol­ecular structure is compared with those of the Se‐ and CH2‐bridged analogues.  相似文献   

8.
A variety of novel O,O‐Diphenyl N‐(trichlorogermanyl)propiono‐α‐aminophosphonates were synthesized by the reaction of β‐(trichlorogermanyl) propionyl chloride with diphenyl α‐aminophosphonates in the presence of triethylamine. The structures of all of the products were confirmed by 1H‐NMR spectroscopy, elemental analyses, and IR spectroscopy. Data of 1H‐NMR and IR spectroscopic determinations indicated the title compounds to be pentacoordinated organogermanium compounds. The results of bioassay showed that some of the title compounds possess potential anticancer activity. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 5–8, 1999  相似文献   

9.
The reaction of N‐methyl‐2,2′‐diphenolamine 1 and 2,2′‐diphenolamine 2 with some diorganotin(IV) oxides [R1/2SnO: R1 = Me, n‐Bu, t‐Bu and Ph] led to the syntheses of diorgano[N‐methyl‐2,2′‐diphenolato‐O,O′,N]tin (IV) 3–6 and diorgano[2,2′‐diphenolato‐O,O′,N]tin (IV) 7–9 . All compounds (except 7 ) studied in this work were characterized by 1H, 13C, 119Sn NMR, infrared, and mass spectroscopy. Their 119Sn NMR data show that the tin atom is tetracoordinated in CDCl3 but penta and hexacoordinated in DMSO‐d6. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 133–139, 1999  相似文献   

10.
Three sterically crowded peri‐substituted naphthalene phosphines, Nap[PPh2][ER] (Nap=naphthalene‐1,8‐diyl; ER=SEt, SPh, SePh) 1–3 , which contain phosphorus and chalcogen functional groups at the peri positions have been prepared. Each phosphine reacts to form a complete series of PV chalcogenides Nap[P(E′)(Ph2)(ER)] (E′=O, S, Se). The novel compounds were fully characterised by using X‐ray crystallography and multinuclear NMR spectroscopy, IR spectroscopy and MS. X‐ray data for 1 , 2 , n O , n S , n Se (n=1–3) are compared. Eleven molecular structures have been analysed by naphthalene ring torsions, peri‐atom displacement, splay angle magnitude, X???E interactions, aromatic ring orientations and quasi‐linear arrangements. An increase in the congestion of the peri region following the introduction of heavy chalcogen atoms is accompanied by a general increase in naphthalene distortion. P???E distances increase for molecules that contain bulkier atoms at the peri positions and also when larger chalcogen atoms are bound to phosphorus. The chalcogenides adopt similar conformations that contain a quasi‐linear E???P? C fragment, except for 3 O , which displays a twist‐axial‐twist conformation resulting in the formation of a linear O???Se? C alignment. Ab initio MO calculations performed on 2 O , 3 O , 3 S and 3 Se reveal Wiberg bond index values of 0.02 to 0.04, which indicates only minor non‐bonded interactions; however, calculations on radical cations of 3 O , 3 S and 3 Se reveal increased values (0.14–0.19).  相似文献   

11.
In the first title salt, [Cu(C12H8N2)2(C5H10N2Se)](ClO4)2, the CuII centre occupies a distorted trigonal–bipyramidal environment defined by four N donors from two 1,10‐phenanthroline (phen) ligands and by the Se donor of a 1,3‐dimethylimidazolidine‐2‐selone ligand, with the equatorial plane defined by the Se and by two N donors from different phen ligands and the axial sites occupied by the two remaining N donors, one from each phen ligand. The Cu—N distances span the range 1.980 (10)–2.114 (11) Å and the Cu—Se distance is 2.491 (3) Å. Intermolecular π–π contacts between imidazolidine rings and the central rings of phen ligands generate chains of cations. In the second salt, [Cu(C10H8N2)2(C3H6N2S)](ClO4)2, the CuII centre occupies a similar distorted trigonal–bipyramidal environment comprising four N donors from two 2,2′‐bipyridyl (bipy) ligands and an S donor from an imidazolidine‐2‐thione ligand. The equatorial plane is defined by the S donor and two N donors from different bipy ligands. The Cu—N distances span the range 1.984 (6)–2.069 (7) Å and the Cu—S distance is 2.366 (3) Å. Intermolecular π–π contacts between imidazolidine and pyridyl rings form chains of cations. A major difference between the two structures is due to the presence in the second complex of two N—H...O hydrogen bonds linking the imidazolidine N—H hydrogen‐bond donors to perchlorate O‐atom acceptors.  相似文献   

12.
To find new adsorbents for uranyl ions, the density functional theory (DFT) was adopted to design a series of new ligands containing an anthracene and two five‐membered heterocycles with nitrogen family nonmetal elements (N, P, As) or oxygen family nonmetal elements (O, S, Se, Te), for example, ligands N,N′‐bis(2‐five‐membered heterocyclidene)‐1,8‐anthradiamines (BFHADAs). Then the uranyl ions were coordinated with BFHADAs to generate five new coordination complexes (Uranyl‐BFHADAs) with heteroatoms N, S, As, Se and Te, respectively. The five‐membered heterocyclic rings of Uranyl‐BFHADA with oxygen atoms were broken under the structural optimization and Uranyl‐BFHADA with heterocyclic atoms P was not obtained. Several structures and property parameters of the ligands BFHADAs (containing heteroatoms N, S, As, Se and Te) and their uranyl complexes Uranyl‐BFHADAs were theoretically investigated and analyzed. The results showed that uranyl ions could form stable coordination complexes with these five BFHADAs. The formed bonds between uranyl ions and the heteroatoms in BFHADAs were coordination bonds rather than other types of bonds. These results could provide insightful information and theoretical guidance for the coordination of uranyl with the atoms N, S, Se, As and Te in other ligands.  相似文献   

13.
The first examples of S‐thiophosphate derivatives of 2‐bromo‐2‐deoxy sugars 7–12 were synthesized by reacting alkyl ammonium salts 1–4 of thiophosphoric acids with α‐1,2‐cis (5) or α‐1,2‐trans dibromo sugars (6) and addition of free thiophosphoric acids 1a or 2a to 2‐bromo‐D‐glucal (13). It was observed that the solvent determines formation of either the O‐ or S‐glycosyl compound. β‐Thiophosphates can be transformed to the α‐configuration in the presence of acid in quantitative yield. The structures of the synthesized derivatives of 7–12 were confirmed by spectroscopic methods. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 465–470, 1999  相似文献   

14.
O‐Aryl O‐(1,2,2,2‐tetrachoroethyl)phos‐ phoramidothioates 3a–h and their thiophosphoric hydrazides 4a–e were synthesized by reactions of O‐aryl O‐(1,2,2,2‐tetrachoroethyl)thiophosphorochloridates 2 with amines and hydrazines, respectively. Their structures were characterized by elemental analysis IR 1H NMR, 31P NMR, and MS. The O‐aryl O‐(1,2,2,2‐tetrachloroethyl)thiophosphoric hydrazides 4a–d (R2=H) can be transformed into 1,3,4,2‐oxadiazaphospholanes 5a–d by the reaction of triethylamine. The results of preliminary bioassays indicated that some of the title compounds have good insecticidal activities against nematodes (Meloidogyne spp.) and pea aphids. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 441–445, 1999  相似文献   

15.
The Influence of Phosphoryl Substituents on the Properties of P‐Substituted 2‐Methylimidazolium Ions and 2‐Methyleneimidazolines [1] The imidazolines ImCHP(E)Ph2 [ 6 , E = S ( a ), Se ( b )] are obtained from ImCHPPh2 ( 4 ) and sulfur or selenium. HBF4 reaction yields the corresponding imidazolium salts [ImCH2P(E)Ph2][BF4] [ 5 , E = S ( a ), Se ( b )]. 1, 3, 4, 5‐Tetramethyl‐2‐methylenimidazoline ( 1 , ImCH2) reacts with Ph2P(O)Cl to give the corresponding phosphane salt [ImCH2P(O)Ph2]Cl ( 7 ) from which the vinyl compound ImCHP(O)Ph2 ( 8 ) is formed through deprotonation. 8 reacts with excess HBF4 to give the phosphine oxide BF3 adduct [ImCH2P(O)Ph2 · BF3][BF4] ( 9 ). The crystal structures of 5a , 5b , 6b , 7 · CH2Cl2 and 9 · H2O as well as preliminary data of 8 are reported and discussed on comparison with the phosphanes [ImCH2PPh2][BF4] ( 3b ) and ImCHPPh2 ( 4 ). From structural data, π‐electron delocalisation is concluded for 6b and 8 .  相似文献   

16.
In view of the isosterism of the sulfonyl group(‐SO2‐) and the phosphoryl group, two new types of compounds N‐(N‐aryl‐O‐alkyl phosphoryl)‐N′‐(4,6‐dimethoxypyrimidin‐2‐yl) ureas (2) and N‐(N‐aryl‐N‐alkylphosphoryl)‐N′‐(4,6‐dimethoxypyrimidin‐2‐yl) ureas (3) were designed and synthesized by treating N‐(arylaminochlorophosphoryl)‐N′‐(4,6‐dimethoxypy‐rimidinyl‐2‐) ureas (4) with alcohols or amines. Compounds 4 were obtained by treating dichloro‐phosphoryl isocyanate with 4,6‐dimethoxy‐2‐amino‐pyrimidine and then with aromatic amines. The enzyme tests in vitro indicated that compounds 2 and 3 were two novel classes of acetolactate synthase (ALS) inhibitors and also showed that phosphoryl groups[‐P(O)(OR)‐, R=alkyl] and [‐P(O)(NHR), R=alkyl] were likely to be good bioisosteres of the sulfonyl group (‐SO2‐) in the sulfonylureas. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10:237–241, 1999  相似文献   

17.
For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm?3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm?2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L?1, surpassing that of LiCoO2.  相似文献   

18.
The unprecedented dehydration of a selenenic acid (RCH2SeOH) to a selenoaldehyde (RCH?Se) has been demonstrated. A primary‐alkyl‐substituted selenenic acid was synthesized for the first time by taking advantage of a bulky cavity‐shaped substituent. Upon heating in solution, the selenenic acid underwent thermal dehydration to produce a stable selenoaldehyde, which was isolated as stable crystals and crystallographically characterized. Investigation of the reaction mechanism revealed that this β dehydration reaction involves two processes, both of which reflect the characteristics of a selenenic acid: 1) dehydrative condensation of two molecules of selenenic acid to generate a selenoseleninate intermediate [RCH2SeSe(O)CH2R], an isomer of a selenenic anhydride, and 2) subsequent β elimination of the selenenic acid from this intermediate to form a C?Se double bond, which establishes the self‐catalyzed β dehydration of the selenenic acid.  相似文献   

19.
The title compound crystallizes as the mono­hydrate, [Co(SeO3)(NH3)4]NO3·H2O. The crystallographic mirror symmetry coincides with the molecular symmetry; the mirror plane passes through the cation, anion and water mol­ecule. The CoN4O2 octahedron is distorted, with the selenito group acting as a bidentate ligand through two bridging O atoms to the cobalt. The coordinated Se—O distance is 1.742 (2) Å, whereas the uncoordinated Se—O distance is 1.646 (3) Å. A three‐dimensional hydrogen‐bonded network exists between [Co(SeO3)(NH3)4]NO3 and the water mol­ecule. The nitrate anion and water mol­ecule form open pores in the structure when hydrogen bonded to two neighboring [Co(SeO3)(NH3)4]+ cations. Selenium participates in two types of relatively close intermolecular interactions with neighboring charged species (Se?N1 and Se?O3), but does not participate in an interaction with a neighboring O2 atom, the nearest contact distance being 4.638 (3) Å.  相似文献   

20.
The title selenenyl halide complex, 3‐iodo‐2‐phenyl‐3H‐3‐selenaindazole, C12H9IN2Se, has an almost planar conformation and a nearly ideal T‐shape for the Se(INC) moiety [Se—I 2.8122 (12), Se—C 1.881 (7) and Se—N2 2.051 (6) Å; C—Se—N 79.6 (3), C—Se—I 96.8 (2) and N—Se—I 176.17 (17)°]. This arrangement, together with the two selenium lone pairs, leads to a distorted trigonal‐bipyrimidal geometry about the Se atom. Intermolecular interactions are largely limited to stacking forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号