首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,1-Bis[4-(4-carboxyphenoxy)phenyl]cyclohexane (III) and 1,1-bis[4-(4-aminophenoxy)phenyl]cyclohexane (V) were prepared in two main steps starting from the aromatic nucleophilic substitution of p-fluorobenzonitrile and p-chloronitrobenzene, respectively, with 1,1-bis(4-hydroxyphenyl)cyclohexane in the presence of potassium carbonate in N,N-dimethylformamide (DMF). Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides with cyclohexylidene cardo groups were directly polycondensated from dicarboxylic acid III with various aromatic diamines or from diamine V with various aromatic dicarboxylic acids in an N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The polyamides exhibited inherent viscosities in the range of 0.45 to 1.78 dL/g. Almost all of the polymers were readily soluble in polar aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc) and could afford transparent, flexible, and tough films by solution casting. The glass transition temperatures (Tg) of these aromatic polyamides were in the range of 180–243°C by DSC, and the 10% weight loss temperatures in nitrogen and air were all above 450°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3575–3583, 1999  相似文献   

2.
A new cardo diamine monomer, 5,5-bis[4-(4-aminophenoxy)phenyl]-4,7-methanohexahydroindane (II), was prepared in two steps with high yield. The monomer was reacted with six different aromatic tetracarboxylic dianhydrides in N,N-dimethylacetamide (DMAc) to obtain the corresponding cardo polyimides via the poly(amic acid) precursors and thermal or chemical imidization. All the poly(amic acid)s could be cast from their DMAc solutions and thermally converted into transparent, flexible, and tough polyimide films which were further characterized by x-ray and mechanical analysis. All of the polymers were amorphous and the polyimide films had a tensile strength range of 89–123 MPa, an elongation at break range of 6–10%, and a tensile modulus range of 1.9–2.5 GPa. Polymers Vc, Ve, and Vf exhibited good solubility in a variety of solvents such as N-methyl-2-pyrrolidinone (NMP), DMAc, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), pyridine, γ-butyrolactone, and even in tetrahydrofuran and chloroform. These polyimides showed glass-transition temperatures between 274 and 299°C and decomposition temperatures at 10% mass loss temperatures ranging from 490 to 521°C and 499 to 532°C in nitrogen and air atmospheres, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2815–2821, 1999  相似文献   

3.
N-Phenyl-3,3-Bis[4-(p-aminophenoxy)phenyl] phthalimidine ( II ) was used as a monomer with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to synthesize polyamides and polyimides, respectively. The diamine II was derived by a nucleophilic substitution of N-phenyl-3,3-bis(4-hydroxyphenyl) phthalimidine with p-chloronitrobenzene in the presence of K2CO3 and then hydro-reduced. Polyamides IV a-g having inherent viscosities of 0.55–1.64 dL/g were prepared by the direct polycondensation of the diamine II with various aromatic diacids using triphenyl phosphite and pyridine as condensing agents. All the aromatic polyamides were amorphous and readily soluble in various polar solvents such as N,N-dimethylacetamide (DMAc), N,N-dimethylformamide, dimethylsulfoxide, and N-methyl-2-pyrrolidone (NMP). Transparent and flexible films of these polymers could be cast from the DMAc solutions. These aromatic polyamides had glass transition temperatures in the range of 293–319°C and 10% weight loss occurred up to 480°C. The polyimides were synthesized from diamine II and various aromatic dianhydrides via the two-stage procedure that included ring-opening polyaddition in DMAc to give poly(amic acid)s, followed by thermal or chemical conversion to polyimides. Most of the aromatic polyimides obtained by chemical cyclization were found to be soluble in NMP, m-cresol, and o-chlorophenol. These polyimides showed almost no weight loss up to 500°C in air or nitrogen atmosphere. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
A new diamine, 2,2-bis[4-(4-aminophenoxy)phenyl]norbornane (BAPN), containing both ether and norbornane cardo groups, was synthesized in three steps started from norcamphor. A series of cardo polyamides were obtained by the direct polycondensation of BAPN and various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. Polyamides had inherent viscosities in the range of 0.82–1.58 dL g−1, and were readily soluble in polar aprotic solvents such as NMP, N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide and dimethyl sulfoxide. These polymers were cast in DMAc solution into transparent, flexible, and tough films that were further characterized by X-ray and mechanical analysis. All the polymers were amorphous, and the polyamide films had a tensile strength range of 71–89 MPa, an elongation at break range of 5–9%, and a tensile modulus range of 2.0–2.3 GPa. Polyamides showed glass transition temperatures in the range of 256–296°C as measured by DSC and thermogravimetric analysis indicated no weight loss below 450°C in nitrogen and air atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2791–2794, 1999  相似文献   

5.
 A novel polymer-forming diimide–diacid, 5,5′-bis[4-(4-trimellitimido phenoxy)phenyl]-hexahydro-4,7-methanoindan (II), was prepared by the condensation reaction of 5,5′-bis[4-(4-aminophenoxy)phenyl]-hexahydro-4,7-methanoindan with trimellitic anhydride. A series of novel aromatic poly(amide–imide)s (PAIs) containing polycyclic cardo groups was prepared by the direct polycondensation of II with various aromatic diamines using phosphorylation techniques. The polymers had inherent viscosities between 0.71 and 0.96 dl/g. The polymers were soluble in polar solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide, and could be cast from their DMAc solutions into transparent, flexible, and tough films, except for III a . These films had yield strengths of 85–114 MPa, tensile strengths of 77–102 MPa, an elongation at break of 8–17%, and initial moduli of 2.0–2.7 GPa. Wide-angle X-ray diffraction revealed that the polymers are amorphous. The glass-transition temperatures of the polymers were in the range 242–312 °C. All the PAIs exhibited no appreciable decomposition below 430 °C, and their 10%-weight-loss temperatures were in the range 484–507 °C in nitrogen and 494–515 °C in air. Received: 26 January 1999 Accepted in revised form: 11 May 1999  相似文献   

6.
9,9-Bis[4-(p-aminophenoxy)phenyl]fluorene ( II ) was used as a monomer with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to synthesize polyamides and polyimides, respectively. The diamine II was derived by a nucleophilic substitution of 9,9-bis(4-hydroxyphenyl)fluorene with p-chloronitrobenzene in the presence of K2CO3 and then hydro-reduced. Polyamides IV a-g having inherent viscosities of 0.73–1.39 dL/g were prepared by the direct polycondensation of the diamine II with various aromatic diacids using triphenyl phosphite and pyridine as condensing agents. All the aromatic polyamides were amorphous and readily soluble in various polar solvents such as N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, and N-methyl-2-pyrrolidone. Transparent and flexible films of these polymers could be cast from the DMAc solutions. These aromatic polyamides had glass transition temperatures in the range of 283–309°C and 10% weight loss occurred up to 460°C. The polyimides were synthesized from diamine II and various aromatic dianhydrides via the two-stage procedure that included ring-opening poly-addition in DMAc to give poly(amic acid)s, followed by thermal or chemical conversion to polyimides. The poly(amic acid)s had inherent viscosities of 0.62–1.78 dL/g, depending on the dianhydrides. Most of the aromatic polyimides obtained by chemical cyclization were found to be soluble in NMP. These polyimides showed almost no weight loss up to 500°C in air or nitrogen atmosphere. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Novel aromatic polyamides were prepared from aromatic diamine containing 4,5-imidazolediyl unit, either by low temperature solution polycondensation or by direct polycondensation. Used diamines were 4,5-bis(4-aminophenyl)-2-phenylimidazole 1, 4,5-bis[4-(4-aminophenyl)]-2-(4-methylphenyl)imidazole 2 and 4,5-bis[4-(4-aminophenoxy)phenyl]-2-phenylimidazole 3. The obtained aromatic polyamides were produced with moderate to high inherent viscosity and soluble in polar aprotic solvents such as N,N-dimethylacetamide (DMAc), 1-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). Thermogravimetric analysis showed those polymers were stable up to 422°C in nitrogen atmosphere. The glass transition temperature (T g)s of the polymers derived from diamine 3 were in the range between 243 and 275°C, and these values were approximately 120–160°C lower than those analogue polyamide I series containing no phenoxy units. The properties of polyamide I series are also compared with those of analogue polymers that order of aromatic nuclei and amide linkage is reversible.  相似文献   

8.
A series of new soluble polyamides having isopropylidene and methyl-substituted arylene ether moieties in the polymer chain were prepared by the direct polycondensation of 3,3′,5,5′-tetramethyl-2,2-bis[4-(4-carboxyphenoxy)phenyl]propane and various diamines in N-methyl-2-pyrrolidinone (NMP) containing CaCl2 using triphenyl phosphite and pyridine as condensing agents. Polymers were produced with moderate to high inherent viscosities of 0.85–1.47 dL g−1 while the weight-average molecular weight and number-average molecular weight were in the range of 86,700–259,000 and 43,300–119,000, respectively. All the polymers were readily dissolved in polar aprotic solvents such as NMP, N,N-dimethylacetamide, and N,N-dimethylformamide, as well as less polar solvents such as m-cresol and pyridine, and even soluble in tetrahydrofuran. These polymers were solution-cast into transparent, flexible and tough films. All of the polymers were amorphous and the polyamide films had a tensile strength range of 82–122 MPa, an elongation at break range of 6–18%, and a tensile modulus range of 2.0–2.8 GPa. These polyamides had glass transition temperatures between 233–260°C and 10% weight loss temperatures in the range of 450–489 and 459–493°C in nitrogen and air atmosphere, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1997–2003, 1999  相似文献   

9.
A new cardo dicarboxylic acid, 8,8‐bis[4‐(4‐carboxyphenoxy)phenyl]tricyclo[5.2.1.02,6]decane (BCPTD), was synthesized from 4,4′‐(octahydro‐4,7‐methano‐5H‐inden‐5‐ylidene)bisphenol and p‐fluorobenzonitrile via aromatic nucleophilic substitution followed by hydrolysis. A series of new cardo polyamides was prepared by the direct polycondensation of BCPTD and various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP) with triphenyl phosphite and pyridine as the condensing agents. Polymers were produced with moderate to high inherent viscosities of 0.65 to 1.08 dL g−1. The polymers, except for polymer PA1 , exhibited number‐average molecular weights and weight‐average molecular weights in the range of 38,400 to 86,300 and 57,800 to 148,000, respectively. Nearly all of the polymers were readily soluble in polar solvents such as NMP, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide as well as in less polar solvents such as pyridine, γ‐butyrolactone, and tetrahydrofuran. All of the polymers were amorphous, and the polyamide films had a tensile‐strength range of 75 to 128 MPa and a tensile‐modulus range of 2.0 to 2.8 GPa. These polyamides had glass‐transition temperatures between 240 and 269°C and 10% weight‐loss temperatures in the range of 477 to 508°C and 471 to 518°C in nitrogen and air atmospheres, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 74–79, 2000  相似文献   

10.
A dicarboxylic acid ( I ) was prepared from the condensation of 9,9-bis[4-(4-aminophenoxy) phenyl] fluorene and trimellitic anhydride. A new family of poly(amide-imide)s having inherent viscosities of 0.75-1.04 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide-diacid I with various aromatic diamines in a medium consisting of N-methyl-2-pyrrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 262–325°C and the 10% weight loss temperatures were above 525°C in air. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
3,3-Bis[4-(4-aminophenoxy)phenyl]phthalide ( II ) was used as a monomer with various aromatic dicarboxylic acids and dianhydrides to synthesize polyamides and polyimides, respectively. The diamine II was derived by a nucleophilic substitution of phenolphthalein with p-chloronitrobenzene in the presence of K2CO3. Polyamides IV a-g having inherent viscosities of 0.77–2.46 dL/g were prepared by the direct polycondensation of diamine II with diacids III a-g using triphenyl phosphite and pyridine as condensing agents. The polyamides were readily soluble in a variety of solvents such as N, N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), and N-methyl-2-pyrrolidinone (NMP) and afforded transparent and flexible films from the polymer solutions. These polymers had glass transition temperatures (Tgs) in the 227–307°C range and 10% weight loss temperatures occurred up to 450°C. Polyimides VI a-e based on diamine II and various aromatic dianhydrides V a-e were synthesized by the two-stage procedure that included ring-opening, followed by thermal or chemical conversion to polyimides. Most of the polyimides obtained by chemical cyclodehydration procedure were found to soluble in DMF, NMP, o-chlorophenol, and m-cresol. The Tgs of these polyimides were in the 260–328°C range and showed almost no weight loss up to 500°C under air and nitrogen atmosphere. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
A dicarboxylic acid ( 1 ) bearing two pre-formed imide rings, was prepared from the condensation of 2,2-bis[4-(4-aminophenoxy)phenyl]propane and trimellitic anhydride. A new family of poly(amide-imide)s having inherent viscosities of 0.53–1.68 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide—diacid I with various aromatic diamines in a medium consisting of N-methyl-2-pyrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these poly(amide-imide)s were in the range of 237–293°C and the 10% weight loss temperatures were above 508°C in nitrogen. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
A fluorine-containing diamine, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane (BAPPH) ( II ), was synthesized in two steps on condensation of 2,2-bis(4-hydroxyphenyl)hexafluoropropane with p-chloronitrobenzene in the presence of potassium carbonate, giving 2,2-bis[4-(4-nitrophenoxy)phenyl]hexafluoropropane ( I ), followed by reduction with hydrazine monohydrate/Pd—C. Fluorine-containing polyamides and copolyamides having inherent viscosities 0.41–0.88 dL g−1 were prepared by direct polycondensation of BAPPH with various aromatic diacids or with mixed diacids, by triphenyl phosphite and pyridine in N-methyl-2-pyrrolidinone (NMP). The polyamides were examined by elemental analysis, IR spectra, inherent viscosity, x-ray diffraction, solubility, DSC, and TGA. The diffractogram showed that the polyamides were crystalline except IVb , IVc , IVf , and Vc . Almost all polyamides were soluble in polar aprotic solvents. The polymers obtained from BAPPH lost no mass below 350°C, with 10% loss of mass being recorded above 467°C in nitrogen. These aromatic polyamides had glass transition temperatures in the 221–253°C range. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
A series of organosoluble aromatic polyimides (PIs) was synthesized from 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐4,7‐methanohexahydroindan (3) and commercial available aromatic dianhydrides such as 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA), 4,4′‐sulfonyl diphthalic anhydride (SDPA), or 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropanic dianhydride (6FDA). PIs (IIIc–f), which were synthesized by direct polymerization in m‐cresol, had inherent viscosities of 0.83–1.05 dL/g. These polymers could easily be dissolved in N,N′‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF), pyridine, m‐cresol, and dichloromethane. Whereas copolymerization was proceeded with equivalent molar ratios of pyromellitic dianhydride (PMDA)/6FDA, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA)/6FDA, or BTDA/SDPA, or ½ for PMDA/SDPA, copolyimides (co‐PIs), derived from 3 and mixed dianhydrides, were soluble in NMP. All the soluble PIs could form transparent, flexible, and tough films, and they showed amorphous characteristics. These films had tensile strengths of 88–111 MPa, elongations at break of 5–10% and initial moduli of 2.01–2.67 GPa. The glass transition temperatures of these polymers were in the range of 252–311°C. Except for IIIe, the 10% weight loss temperatures (Td) of PIs were above 500°C, and the amount of carbonized residues of the PIs at 800°C in nitrogen atmosphere were above 50%. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1681–1691, 1999  相似文献   

15.
A series of new polyamides containing both sulfone and oxyethylene moieties in the polymer chain was prepared by the direct polycondensation of the diamine monomer 2,2‐bis[4‐[2‐(4‐aminophenoxy)ethoxy]phenyl]sulfone (BAEPS) and various aromatic dicarboxylic acids in N‐methyl‐2‐pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. Polymers were produced with inherent viscosities of 0.30–0.60 dl/g and identified by elemental analysis, and infrared and nuclear magnetic resonance spectra. Most of the polymers were readily dissolved in polar solvents such as NMP, dimethylsulfoxide, N,N‐dimethylacetamide, N,N‐dimethylformamide and m‐cresol at room temperature. Polymers containing rigid and symmetric p‐phenylene, naphthalene and p‐biphenylene moieties revealed a crystalline nature and showed no solubility in organic solvents. These polyamides had 10% weight loss temperatures ranging between 423 and 465 °C in nitrogen atmosphere and glass transition temperatures between 170 and 305 °C. The polymers with crystallinity nature exhibited melting endotherms (Tm) below 386 °C in differential scanning calorimetry trace. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Fifteen bis(phenoxy) fluorene-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 9,9-bis[4-(4-aminophenoxy)phenyl]fluorene (BAPPF) with var-ious aromatic bis(trimellitimide)s II in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III having inherent vis-cosities up to 1.45 dL/g were obtained in quantitative yields. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 263–315°C and the 10% weight loss temperatures were above 510°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III ′ prepared from 9,9-[4-(4-trimellitimidophenoxy)phenyl]fluorene and various aromatic diamines. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
A new dicarboxylic acid containing a diphenylmethylene linkage, bis[4‐(4‐carboxyphenoxy)phenyl]diphenylmethane (BCAPD), was prepared from bis(4‐hydroxphenyl)diphenylmethane and p‐fluorobenzonitrile via an aromatic nucleophilic substitution reaction followed by hydrolysis. A series of novel polyamides were prepared by the direct polycondensation of BCAPD and various aromatic diamines. The polymers were produced with moderate to high inherent viscosities of 0.80–0.85 dL g?1. Nearly all the polymers were readily soluble in polar solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide, in less polar solvents such as pyridine and cyclohexanone, and in tetrahydrofuran. All the polymers were amorphous, and the polyamide films had a tensile strength and a tensile modulus greater than 80 MPa and 2.0 GPa, respectively. These polyamides had glass‐transition temperatures between 249 and 274 °C, and their temperatures at a 10% weight loss were 477–538 and 483–540 °C in nitrogen and air atmospheres, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1156–1161, 2001  相似文献   

18.
A series of novel bis(phenoxy)naphthalene-containing polyamides having inherent viscosity up to 2.02 dL/g were synthesized by the direct polycondensation of the diamine 1,7-bis(4-aminophenoxy)naphthalene with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Most of the polyamides could be readily dissolved in polar aprotic solvents such as N,N-dimethylacetamide and NMP, and could be solution-cast into transparent, flexible, and tough films. These polymers had glass transition temperatures in the range of 139–263°C, and 10% weight loss temperatures in nitrogen and air were above 499 and 484°C, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
A novel aromatic dicarboxylic acid monomer, 4,4′-(2,3-naphthalenedioxy)-dibenzoic acid ( 3 ), was prepared by the fluorodisplacement reaction of p-fluorobenzonitrile with 2,3-dihydroxynaphthalene in N,N-dimethylformamide (DMF) in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate dinitrile. A series of novel aromatic polyamides containing ortho-linked aromatic units in the main chain were synthesized by the direct polycondensation of diacid 3 and a variety of aromatic diamines using triphenyl phosphite and pyridine as condensing agents in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities higher than 0.74 and up to 2.10 dL/g. All of these polyamides were soluble in polar solvents, such as NMP, DMF, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide. Transparent, flexible, and tough films could be cast from their DMAc or NMP solutions. The solvent-cast films had high tensile strengths and moduli. Extensions to break were relatively low, except for the polymers derived from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and 3,4′-oxydianiline, which had elongations of 82 and 62%, respectively. Except for the polyamide based on p-phenylenediamine, all the other polyamides were amorphous in nature. All the polymers are thermally stable to temperatures in excess of 450°C in either air or nitrogen atmosphere. The polymers exhibited glass transition temperatures ranging from 183 to 260°C and decomposition temperatures (10% weight loss) ranging from 462–523°C in air and 468–530°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3385–3391, 1997  相似文献   

20.
2,6-Bis(4-aminophenoxy)naphthalene (2,6-BAPON) was synthesized in two steps from the condensation of 2,6-dihydroxynaphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 2,6-bis(4-nitrophenoxy)naphthalene, followed by hydrazine hydrate/Pd—C reduction. A series of new polyamides were synthesized by the direct polycondensation of 2,6-BAPON with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved metal salts such as CaCl2 or LiCl using triphenyl phosphite and pyridine as condensing agents. The polymers were obtained in quantitative yields with inherent viscosities of 0.62–2.50 dL/g. Most of the polymers were soluble in aprotic dipolar solvents such as N,N-dimethylacetamide (DMAc) and NMP, and they could be solution cast into transparent, flexible, and tough films. The casting films had yield strengths of 84–105 MPa, tensile strengths of 68–95 MPa, elongations at break of 8–36%, and tensile moduli of 1.4–2.1 GPa. The glass transition temperatures of the polyamides were in the range 155–225°C, and their 10% weight loss temperatures were above 505°C in nitrogen and above 474°C in air. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2147–2156, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号