首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polyimides derived from a new dianhydride with p-nitrophenyl pendant groups have been synthesized and their properties compared with those of a reference series, without side groups. The polymers were obtained by combination of the novel monomer with aromatic diamines, in a two-step procedure that involved the synthesis of poly(amic acid) or poly(amic silyl ester) intermediates and the cyclization of them to polyimides by thermal treatment. The introduction of the polar nitro groups caused significant increase of the Tgs. On the contrary, the thermal stability was reduced because of the breakdown of CAr—NO2 linkages around 400oC. A slight decrease in mechanical properties was observed, due to the bulkiness of the side groups, that also produced an important decrease in the strength of the β relaxation, as determined by dynamic mechanical analysis. The solubility of the current polyimides in organic solvents was as poor as that of the parent unsubstituted polymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3377–3384, 1999  相似文献   

2.
A series of new poly(ether imide)s containing the naphthalimide moiety were prepared from bis(4-fluorobenzoyl)naphthalimides and several bisphenols by aromatic nucleophilic displacement polymerization. These polyimides had inherent viscosities in the range of 0.31–1.04 dL/g in chloroform and glass transition temperatures of 283.0–341.6°C by differential scanning calorimetry. The onset temperature for 5% weight loss for all the polymers was over 448°C, as assessed by thermogravimetry at a heating rate 10°C/min in nitrogen. In addition, these novel polyimides exhibited good solubility in organic solvents including N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, 1,1,2,2-tetrachloroethane and chloroform. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3227–3231, 1999  相似文献   

3.
A bis(ether amine) containing the ortho‐substituted phenylene unit and pendant tert‐butyl group, 1,2‐bis(4‐aminophenoxy)‐4‐tert‐butylbenzene, was synthesized and used as a monomer to prepare polyimides with six commercial dianhydrides via a conventional two‐stage procedure. The intermediate poly(amic acid)s had inherent viscosities of 0.78–1.44 dL/g, and most of them could be thermally converted into transparent, flexible, and tough polyimide films. The inherent viscosities of the resulting polyimides were in the range of 0.46–0.87 dL/g. All polyimides were noncrystalline, and most of them showed excellent solubility in polar organic solvents. The glass‐transition temperatures of these polyimides were in the range of 222–259 °C in differential scanning calorimetry and 212–282 °C in thermomechanicl analysis. These polyimides showed no appreciable decomposition up to 500 °C in thermogravimetric analysis in air or nitrogen. A comparative study of the properties with the corresponding polyimides without pendant tert‐butyl groups derived from 1,2‐bis(4‐aminophenoxy)benzene is also presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1551–1559, 2000  相似文献   

4.
New aromatic diamines [(1) and (2)] containing polycycloalkane structures between two benzene rings were synthesized by HCl-catalyzed condensation reaction of aniline hydrochloride and corresponding polycycloalkanone derivatives. The structures of diamines were identified by 1H-NMR, 13C-NMR, FTIR spectroscopy, and elemental analysis. The polyimides were synthesized from the obtained diamines with various aromatic dianhydrides by one-step polymerization in m-cresol. The inherent viscosities of the resulting polyimides were in the range of 0.34–1.02 dL/g. The polyimides showed good thermal stabilities and solubility. All the polymers were readily soluble in N-methyl-2-pyrrolidone, m-cresol, tetrachloroethane, etc. Some of them were soluble even in chloroform at room temperature. The glass transition temperatures were observed in the range of 323–363°C, and all of the polymers were stable up to 400°C under nitrogen atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3449–3454, 1999  相似文献   

5.
Two series of polyimides based on laterally attached p‐terphenyl and biphenyl groups were synthesized. The solubility and thermal properties were studied using DSC, thermogravimetric analysis, and the solubility test. These polymers exhibited good thermal stability and excellent solubility. The high solubility for both polymer series was attributed to the non‐coplanarity of diamine monomers and the use of fluorinated dianhydride, whereas the slightly better solubility for polymers based on p‐terphenyl was attributed to further weakening of interchain interaction of the polymers. Both polymer series exhibited glass‐transition temperatures (Tg's) in the range of 244–272 °C. The Tg's of polymers containing laterally attached p‐terphenyls were higher than those of their counterparts containing biphenyls by 5–17 °C. This was attributed to the formation of an interdigitated structure that hinders the segmental movement of polymer chains. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2998–3007, 2001  相似文献   

6.
A novel aromatic diacid, 3, 5‐dicarboxyl‐4′‐amino diphenyl ether, containing pendant phenoxy amine group was synthesized. Homo‐ and co‐polybenzimidazoles containing different content of pendant phenoxyamine groups were synthesized by condensation of 3,3′‐diaminobenzidine with this acid and a mixture of this acid and isophthalic acid in different ratio in polyphosphoric acid. Copolybenzimidazoles with structural variations were also synthesized based on this acid and pyridine dicarboxylic acid, terephthalic acid, adipic acid, or sebacic acid. The polymers have good solubility in polar aprotic solvents and strong acids and they form tough flexible films by solution casting. The polymers were characterized by different instrumental techniques (FTIR, TGA, DSC, XRD, etc.) and for solvent solubility, mechanical properties, inherent viscosity, and proton conductivity. The inherent viscosities of the polymers vary in the range of 0.62–1.52 dL/g. They have high thermal stability up to 475–506 °C (IDT) in nitrogen, high glass transition temperatures (Tg) ranging from 313 to 435 °C and good tensile strength ranging from 58 to 125 MPa. Proton conductivity of homo polymer is 3.72 × 10?3 S/cm at 25 °C and 2.45 × 10?2 S/cm at 200 °C © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5776–5793, 2008  相似文献   

7.
New asymmetrical aromatic dichlorophthalimide monomers containing pendant groups (trifluoromethyl or methyl) were conveniently prepared from inexpensive and commercially available compounds. With these monomers, a new class of soluble polyimides with a regioirregular structure within the polymer backbone was obtained by the Ni(0)‐catalyzed polymerization method. The structures of the polymers were confirmed by various spectroscopic techniques. The polyimides displayed better solubility and higher thermal stability than the corresponding regular polyimides. In addition, fluorinated polyimides in this study had low dielectric constants ranging from 2.52 to 2.78, low moisture absorptions of less than 0.59%, and low thermal expansion coefficients between 10.6 and 19.7 ppm/°C. The oxygen permeability coefficients and permeability selectivity of oxygen to nitrogen of the films were in the ranges of 2.99–4.20 barrer and 5.55–7.50, respectively. We have demonstrated that the synthetic pathway for polyimides provides a successful approach to increasing the solubility and processability of polyimides without sacrificing their thermal stability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3550–3561, 2007  相似文献   

8.
2,2,′3,3′‐Biphenyltetracarboxylic dianhydride (2,2,′3,3′‐BPDA) was prepared by a coupling reaction of dimethyl 3‐iodophthalate. The X‐ray single‐crystal structure determination showed that this dianhydride had a bent and noncopolanar structure, presenting a striking contrast to its isomer, 3,3,′4,4′‐BPDA. This dianhydride was reacted with aromatic diamines in a polar aprotic solvent such as N,N‐dimethylacetamide (DMAc) to form polyamic acid intermediates, which imidized chemically to polyimides with inherent viscosities of 0.34–0.55 dL/g, depending on the diamine used. The polyimides from 2,2,′3,3′‐BPDA exhibited a good solubility and were dissolved in polar aprotic solvents and polychlorocarbons. These polyimides have high glass transition temperatures above 283°C. Thermogravimetric analyses indicated that these polyimides were fairly stable up to 500°C, and the 5% weight loss temperatures were recorded in the range of 534–583°C in nitrogen atmosphere and 537–561°C in air atmosphere. All polyimides were amorphous according to X‐ray determination. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1425–1433, 1999  相似文献   

9.
A series of novel benzimidazole‐containing aromatic polyimides were prepared from synthesized 5,4′‐diamino‐2‐phenyl benzimidazole (DAPBI), and commercial dianhydrides by the conventional two‐step polymerization. The obtained films were amorphous and could afford flexible, transparent, and tough films with excellent thermal and mechanical properties. They showed high levels of tension strength of up to 234 MPa, modulus of up to 5.6 GPa without any stretching. According to thermal stability measurements, the glass‐transition temperatures of the polymers were observed between 329 and 425 °C. The 5% weight‐loss temperatures of most polyimides were above 600 °C in nitrogen. Excellent properties of these polyimides were proved to be attributed to the rigid‐rod structure and hydrogen bond of intermacromolecular. SAXS and SEM results showed self‐molecular orientation caused the formation of rod‐like extended conformations. It was demonstrated that high degree of supramolecular order led to the increase of thermal stability and mechanical properties of the polyimide films. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2024–2031, 2009  相似文献   

10.
A series of novel copolyimides have been synthesized from three commercially available dianhydrides and two diamine monomers containing the tetrahydro[5]helicene unit. Some of the copolyimides were soluble in common organic solvents such as 1,1,2,2-tetrachloroethane, N,N-dimethylacetamide, and N-methyl-2-pyrrolidinone. Molecular modeling was used to explain the enhanced solubility of the presented polyimides, based on structural features of the tetrahydro[5]helicene monomeric units. The onset temperatures for 5% weight loss for these polyimides, as assessed by thermogravimetry, were above 430°C in nitrogen. Inherent viscosities of the obtained polyimides were above 0.36 dL/g. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1349–1353, 1998  相似文献   

11.
A new approach for the crosslinking of polyimides via the lactamization of spirodilactone unit in polyimide backbone was studied by two means: model reaction and the comparison of the properties of the polyimide precursors to those of the crosslinking polymers. Polyimides 4 and 5 were soluble in N,N′dimethylacetamide (DMAc), dimethylformamide (DMF), dimethylsulfoxide (DMSO), N′-methylpyrrolidone (NMP), and other common organic solvents, whereas their corresponding crosslinking polymers were insoluble in these solvents. The glass transition temperatures for polyimide 5 and its crosslinking polymer were 262°C and 291°C, whereas those for polyimide 4 and its crosslinking polymer were 265°C and 360°C. The weight-loss rate of the crosslinking polymers was apparently slower than that of the precursors when the temperature was > 400°C. The 10% weight-loss temperature for the polyimides 4 and 5 was < 500°C, whereas that for the crosslinking polymers was close to or above 600°C. The results indicate that this type of crosslinking polymer has good thermal properties. The temperature for the formation of lactam was above 180°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3680–3686, 1999  相似文献   

12.
To prepare novel polyimides with enhanced thermal stability and high solubility in common organic solvents, diamine monomers, 4‐aryl‐2,6 bis‐(4‐amino phenyl)pyridine, were introduced. The diamines were reacted with three different conventional aromatic dianhydrides including pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, and hexafluoroisopropylidene‐2,2‐bis(phthalic‐dianhydride) (6FDA) in dimethylacetamide solvent to obtain the corresponding polyimides via the polyamic acid precursors and chemical imidization. The monomers and polymers were characterized by Fourier transform infrared spectroscopy, 1H NMR, mass spectroscopy, and elemental analysis; and the best condition of polymerization and imidization were obtained via the study of model compound. The polyimides showed little or no weight loss by thermogravimetric analysis up to 500 °C, and those derived from 6FDA exhibited good solubility in various polar solvents. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3826–3831, 2001  相似文献   

13.
A simple and generally applicable new synthetic method to prepare second‐order nonlinear optical (NLO) polyimides has been developed. In this approach, side‐chain‐substituted polyimides were synthesized via isocyanato‐terminated prepolymers prepared directly from NLO chromophore‐containing diols Disperse Red 19. Using this technique, the tedious synthesis of the classical diamine monomers and harsh imidization process associated with polyamic acid prepolymers are avoided. The resulting polymers possessed good solubility and high glass‐transition (171–211 °C) and thermal‐decomposition temperatures. The polymers also exhibited excellent film‐forming properties, and good optical‐quality films were easily obtained by spin coating. The second‐order NLO activities of the polymer films were also studied, and several factors that might determine the growth of the second‐order NLO activity were proposed. The polymers obtained exhibit a large second‐order NLO activity (34–52.5 pm/V at 1064 nm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2189–2195, 2001  相似文献   

14.
A new cardo diamine monomer, 5,5-bis[4-(4-aminophenoxy)phenyl]-4,7-methanohexahydroindane (II), was prepared in two steps with high yield. The monomer was reacted with six different aromatic tetracarboxylic dianhydrides in N,N-dimethylacetamide (DMAc) to obtain the corresponding cardo polyimides via the poly(amic acid) precursors and thermal or chemical imidization. All the poly(amic acid)s could be cast from their DMAc solutions and thermally converted into transparent, flexible, and tough polyimide films which were further characterized by x-ray and mechanical analysis. All of the polymers were amorphous and the polyimide films had a tensile strength range of 89–123 MPa, an elongation at break range of 6–10%, and a tensile modulus range of 1.9–2.5 GPa. Polymers Vc, Ve, and Vf exhibited good solubility in a variety of solvents such as N-methyl-2-pyrrolidinone (NMP), DMAc, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), pyridine, γ-butyrolactone, and even in tetrahydrofuran and chloroform. These polyimides showed glass-transition temperatures between 274 and 299°C and decomposition temperatures at 10% mass loss temperatures ranging from 490 to 521°C and 499 to 532°C in nitrogen and air atmospheres, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2815–2821, 1999  相似文献   

15.
A series of novel polyimides based on N,N‐di(4‐aminophenyl)‐1‐aminopyrene and aromatic or alicyclic tetracarboxylic dianhydrides were synthesized. The polymers exhibited good solubility in many polar organic solvents and could afford robust films via solution casting. The polyimides derived from aromatic dianhydrides exhibited high thermal stability and high glass‐transition temperatures (333–364 °C). Cyclic voltammetry studies of the polymer films showed that these polyimides are both p and n dopable and have multicolored electrochromic states. For the polyimides derived from alicyclic dianhydrides, they revealed a strong blue‐light emission with high fluorescence quantum yields (?PL > 45%) and a marked solvatochromic behavior. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Two novel diamine monomers, 1,4‐bis (4‐aminophenoxy)‐2‐[(3′,5′‐ditrifluoromethyl)phenyl]benzene and 1,4‐bis [2′‐cyano‐3′(4″‐amino phenoxy)phenoxy]‐2‐[(3′,5′‐ditrifluoromethyl)phenyl] benzene, were synthesized from (3,5‐ditrifluoromethyl)phenylhydroquinone. A series of ditrifluoromethylated aromatic polyimides derived from the diamines were prepared through a typical two‐step polymerization method. These polyimides had a high thermal stability, and the temperatures at 10% weight loss were above 507 °C in nitrogen. Most of the polymers showed good solubility in anhydrated 1‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, chloroform, and tetrahydrofuran at room temperature. All the polymers formed transparent, strong, and flexible films with tensile strengths of 63.6–95.8 MPa, elongations at break of 5–10%, and Young's moduli of 2.38–2.96 GPa. The dielectric constants estimated from the average refractive indices are 2.69–2.89. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3018–3029, 2005  相似文献   

17.
Two novel isophthalic diacid‐based monomers have been synthesized by inclusion in ring position 5 of a functionalized benzoylamine moiety. The functionalization includes a 12‐crown‐4 ether group fused with the benzene subunit and a dipodand substructure, formally a disubstitution of the benzene ring, with two sequences of ethyl‐terminated ethylene oxide units, which represent the open‐chain counterpart of the alicylic crown moiety. The polycondensation of the two diacids with five aromatic diamines yielded 10 new polyamides with crown or podand pendant substructures. The polyamides had previously been chemically characterized by NMR, IR, and elemental analysis. The polymers showed high glass transition temperatures of up to 349 °C, good thermal stability (Tdonset, N2 ≈ 400 °C), and improved solubility in organic solvents. The presence of acyclic or alicyclic oxyethylene sequences as crown ether or podand substructures and an additional amide side group per repeat unit made the polymers essentially amorphous and improved their water absorption ability in comparison with nonsubstituted polyamides. Water uptake values as high as 12% were observed at 65% relative humidity. All the polyamides showed a good film‐forming ability, and the mechanical properties of these films are considered to be satisfactory for experimental aromatic polyamides. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2270–2281, 2006  相似文献   

18.
A series of new polyimides containing alicyclic units and alkyloxy side chains were prepared from 9,10‐dialkyloxy‐1,2,3,4,5,6,7,8‐octahydro‐2,3,6,7‐anthracenetetracarboxylic 2,3:6,7‐dianhydrides and various aromatic diamines. Their physical properties and structures were investigated. Polymers were obtained with inherent viscosities of 0.24–0.53 dL/g. In comparison with the aromatic polyimides, most polymers were readily soluble in common organic solvent such as N‐methylpyrrolidone and m‐cresol. These polymers had glass‐transition temperatures between 111 and 296 °C depending on the structure of the repeating unit and 10% weight‐loss temperatures of 418–477 °C in nitrogen. Wide‐angle X‐ray diffractometry for as‐polymerized samples revealed very low crystallinity and layered structures, which were better developed in the polymers with longer side chains. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1764–1774, 2002  相似文献   

19.
In this article a new synthesis of 3,3′-diaminobiphenyl (3,3′-DABP) is described, along with the preparation and characterization of polyamides and polyimides based on it. Reactivity of this monomer was calculated by a molecular simulation study, using ab initio quantum-mechanical methods. Terephthaloyl and isophthaloyl chloride were used for the synthesis of polyamides, while 3,3′,4,4′-biphenylenetetracarboxylic acid dianhydride and 4,4′-(hexafluoroisopropylidene) diphthalic anhydride were used for the synthesis of polyimides. Medium to high molecular weight polymers were attained, with inherent viscosities near or higher than 1.0 dL/g, the solubility of the 3,3′-DABP polymers was much better than that of the homologous polymers from benzidine (4,4′-DABP), the glass-transition temperatures were lower, by about 40°C, and the thermal resistance, as measured by thermogravimetry, was virtually the same. Amorphous films, made from cast polymer solutions, showed excellent mechanical properties, comparable to conventional aromatic polyamides and polyimides. Theoretical calculations demonstrated that the radius of giration, end-to-end distance and density of poly(3,3′-DABP-isophthalamide) were lower than those of poly(4,4′-DABP-isophthalamide), as a consequence of the chain folding induced in the backbone by the m-substitution in 3,3′-DABP. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4646–4655, 1999  相似文献   

20.
Two dianiline monomers were prepared by the reaction of either 4,4′‐methylenedianiline or 4,4′‐oxydianiline with 1,4‐benzoquinone. These monomers were used to synthesize a series of amine–quinone polyimides by condensation with either 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride or 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride to make the corresponding polyamic acid. The polyamic acids were converted to the polyimides by thermal imidization at 290 °C. The amine–quinone polyimides gave freestanding films with tensile strengths in the range of 90 to 150 MPa and Young's moduli of 0.9 to 1.5 GPa. The thermal decomposition temperature under nitrogen was 440 to 480 °C and the glass‐transition temperature was in the range of 280 to 310 °C. The amine–quinone polyimides had the excellent thermal and mechanical properties that one expects for polyimides. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4044–4049, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号