首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The melt polycondensation reaction of the prepolymer prepared from N-(benzyloxycarbonyl)-L -aspartic acid anhydride (N-CBz-L -aspartic acid anhydride) and low molecular weight poly(ethylene glycol) (PEG) using titanium isopropoxide (TIP) as a catalyst produced the new biodegradable poly(L -aspartic acid-co-PEG). This new copolymer had pendant amine functional groups along the polymer backbone chain. The optimal reaction conditions for the preparation of the prepolymer were obtained by using a 0.12 mol % of p-toluenesulfonic acid with PEG 200 for 48 h. The weight-average molecular weight of the prepolymer increased from 1,290 to 31,700 upon melt polycondensation for 6 h at 130°C under vacuum using 0.5 wt % TIP as a catalyst. The synthesized monomer, prepolymer, and copolymer were characterized by FTIR, 1H- and 13C-NMR, and UV spectrophotometers. Thermal properties of the prepolymer and the protected copolymer were measured by DSC. The glass transition temperature (Tg) of the prepolymer shifted to a significantly higher temperature with increasing molecular weight via melt polycondensation reaction, and no melting temperature was observed. The in vitro hydrolytic degradation of these poly(L -aspartic acid-co-PEG) was measured in terms of molecular weight loss at different times and pHs at 37°C. This pH-dependent molecular weight loss was due to a simple hydrolysis of the backbone ester linkages and was characterized by more rapid rates of hydrolysis at an alkaline pH. These new biodegradable poly(L -aspartic acid-co-PEG)s may have potential applications in the biomedical field. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2949–2959, 1998  相似文献   

2.
Core‐shell structured nanoparticles of poly(ethylene glycol) (PEG)/polypeptide/poly(D ,L ‐lactide) (PLA) copolymers were prepared and their properties were investigated. The copolymers had a poly(L ‐serine) or poly(L ‐phenylalanine) block as a linker between a hydrophilic PEG and a hydrophobic PLA unit. They formed core‐shell structured nanoparticles, where the polypeptide block resided at the interface between a hydrophilic PEG shell and a hydrophobic PLA core. In the synthesis, poly(ethylene glycol)‐b‐poly(L ‐serine) (PEG‐PSER) was prepared by ring opening polymerization of N‐carboxyanhydride of O‐(tert‐butyl)‐L ‐serine and subsequent removal of tert‐butyl groups. Poly(ethylene glycol)‐b‐poly(L ‐phenylalanine) (PEG‐PPA) was obtained by ring opening polymerization of N‐carboxyanhydride of L ‐phenylalanine. Methoxy‐poly(ethylene glycol)‐amine with a MW of 5000 was used as an initiator for both polymerizations. The polymerization of D ,L ‐lactide by initiation with PEG‐PSER and PEG‐PPA produced a comb‐like copolymer, poly(ethylene glycol)‐b‐[poly(L ‐serine)‐g‐poly(D ,L ‐lactide)] (PEG‐PSER‐PLA) and a linear copolymer, poly(ethylene glycol)‐b‐poly(L ‐phenylalanine)‐b‐poly(D ,L ‐lactide) (PEG‐PPA‐PLA), respectively. The nanoparticles obtained from PEG‐PPA‐PLA showed a negative zeta potential value of ?16.6 mV, while those of PEG‐PSER‐PLA exhibited a positive value of about 19.3 mV. In pH 7.0 phosphate buffer solution at 36 °C, the nanoparticles of PEG/polypeptide/PLA copolymers showed much better stability than those of a linear PEG‐PLA copolymer having a comparable molecular weight. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Telechelic hydroxylated poly(3‐hydroxybutyrate) (PHB‐diol) oligomers have been successfully synthesized in 90–95% yield from high molar mass PHB by tin‐catalyzed alcoholysis with different diols (mainly 1,4‐butanediol) in diglyme. The PHB‐diol oligomers structure was studied by nuclear magnetic resonance, Fourier transformed infrared spectroscopy MALDI‐ToF MS, and size exclusion chromatography, whereas their crystalline structures, thermal properties and thermal stability were analyzed by wide angle X‐ray scattering, DSC, and thermogravimetric analyses. The kinetic of the alcoholysis was studied and the influence of (i) the catalyst amount, (ii) the diol amount, (iii) the reaction temperature, and (iv) the diol chain length on the molar mass was discussed. The influence of the PHB‐diol molar mass on the thermal stability, the thermal properties and optical properties was investigated. Then, tin‐catalyzed poly(ester‐ether‐urethane)s (PEEU) of Mn = 15,000–20,000 g/mol were synthesized in 1,2‐dichloroethane from PHB‐diol oligomers (Pester) with modified 4,4'‐MDI and different polyether‐diols (Pether) (PEG‐2000, PEG‐4000, and PPG‐PEG‐PPG). The influence of the PHB‐diol chain length, the Pether/Pester ratio, the polyether segment nature and the PEG chain length on the thermal properties and crystalline structures of PEEUs was particularly discussed. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1949–1961  相似文献   

4.
A series of activated urethane‐type derivatives of γ‐benzyl‐L ‐glutamate were synthesized, and their potential as monomers for polypeptide synthesis was investigated. The derivatives of the focus of this work were a series of N‐aryloxycarbonyl‐γ‐benzyl‐L ‐glutamate 1 , of which aryl groups were phenyl, 4‐chlorophenyl, and 4‐nitrophenyl. These urethanes 1 were reactive in polar solvents such as dimethylsulfoxide, N,N‐dimethylformamide (DMF), and N,N‐dimethylacetamide (DMAc), and were efficiently converted into poly(γ‐benzyl‐L ‐glutamate) (poly(BLG)) under mild conditions; at 60 °C without addition of any catalyst. Among the three urethanes, that having 4‐nitrophenoxycarbonyl group 1c was the most reactive to give poly(BLG) efficiently, as was expected from the highly electron deficient nature of the nitrophenoxycarbonyl group. On the other hand, the urethane 1a having phenoxycarbonyl group was also efficiently converted into poly(BLG), in spite of the intrinsically less electrophilicity of the phenoxycarbonyl group. In addition, the successful formation of poly(BLG) by the reaction of 1a favored its diluted concentration (0.1 M) much more than 2.0 M, the optimum initial concentration for 1c . 1H NMR spectroscopic analyses of the reactions in situ revealed that the predominant pathway from 1 to poly(BLG) involved the intramolecular cyclization of 1 into the corresponding N‐carboxyanhydride, with release of phenol and its successive ring‐opening polymerization with release of carbon dioxide. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2649–2657, 2008  相似文献   

5.
Poly(ethylene glycol) (PEG) with molecular weight (Mn) of 1000, 2000, 3000, and 4000 g/mol, four types of diisocyanate [hexamethylene diisocyanate (HDI), 4,4′-dicyclohexylmethane diisocyanate (H12MDI), isophorone diisocyanate (IPDI), and toluene diisocyanate (TDI)], two types of comonomers [acrylamide (AAm) and acrylic acid (AAc)] that comprised up to 60% of the total solid were used to prepare UV-curable PEG–based polyurethane (PU) acrylate hydrogel. The gels were evaluated in terms of mechanical properties, water content as a function of immersion time and pH, and X-ray diffraction profiles of dry and swollen films. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2703–2709, 1999  相似文献   

6.
We describe the utilization of four kinds of diol derivatives, representing structural similarity to the well‐known and commercially available vinyl monomers such as acrylate, acrylamide, styrene, and N‐substituted maleimide. The vinyl monomers are readily converted by dihydroxylation reaction to afford the vicinal diol. The synthesis of poly(urethane)s was performed by the reaction of the vicinal diol with two model diisocyanates, including methylene diphenyl isocyanate (MDI) and hexamethylene diisocyanate (HDI) in the presence of dibutyltin dilaurate to form a series of poly(urethane)s, and the effect of vicinal diol containing a side chain inherited from vinyl monomers on their thermal and mechanical properties was investigated using thermogravimetric analysis, differential scanning calorimetry, and tensile test. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 799–805  相似文献   

7.
The synthesis, micelle formation, and bulk properties of semifluorinated amphiphilic poly(ethylene glycol)‐b‐poly(pentafluorostyrene)‐g‐cubic polyhedral oligomeric silsesquioxane (PEG‐b‐PPFS‐g‐POSS) hybrid copolymers is reported. The synthesis of amphiphilic PEG‐b‐PPFS block copolymers are achieved using atom transfer radical polymerization (ATRP) at 100 °C in trifluorotoluene using modified poly(ethylene glycol) as a macroinitiator. Subsequently, a proportion of the reactive para‐F functionality on the pentafluorostyrene units was replaced with aminopropylisobutyl POSS through aromatic nucleophilic substitution reactions. The products were fully characterized by 1H‐NMR and GPC. The products, PEG‐b‐PPFS and PEG‐b‐PPFS‐g‐POSS, were subsequently self‐assembled in aqueous solutions to form micellar structures. The critical micelle concentrations (cmc) were estimated using two different techniques: fluorescence spectroscopy and dynamic light scattering (DLS). The cmc was found to decrease concomitantly with the number of POSS particles grafted per copolymer chain. The hydrodynamic particle sizes (Rh) of the micelles, calculated from DLS data, increase as the number of POSS molecules grafted per copolymer chain increases. For example, Rh increased from ~60 nm for PEG‐b‐PPFS to ~80 nm for PEG‐b‐PPFS‐g‐POSS25 (25 is the average number of POSS particles grafted copolymer chain). Static light scattering (SLS) data confirm that the formation of larger micelles by higher POSS containing copolymers results from higher aggregation numbers (Nagg), caused by increased hydrophobicity. The Rg/Rh values, where Rg is the radius of gyration calculated from SLS data, are consistent with a spherical particle model having a core‐shell structure. Thermal characterization by differential scanning calorimetry (DSC) reveals that the grafted POSS acts as a plasticizer; the glass transition temperature (Tg) of the PPFS block in the copolymer decreases significantly with increasing POSS content. Finally, the rhombohedral crystal structure of POSS in PEG‐b‐PPFS‐g‐POSS was verified by wide angle X‐ray diffraction measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 152–163, 2010  相似文献   

8.
The synthesis of hydroxyproline‐based telechelic prepolymers by the condensation polymerization of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline methyl ester was investigated. All the polymerizations were carried out in the melt with stannous octoate as the catalyst and with different diols. The products were characterized by differential scanning calorimetry, proton nuclear magnetic resonance, infrared spectrophotometry, and inherent viscosity (ηinh). According to the analytic results, the ηinh value of the prepolymers depended on the kind and amount of diols that were added. With an increase in the 1,6‐hexanediol feed from 2 to 10 mol %, there was a decrease in ηinh from 0.78 to 0.41 along with a decrease in the glass‐transition temperature (Tg ) from 63 to 42 °C. When 2 mol % of different kinds of diols were used, ηinh ranged from 0.78 to 0.21, and Tg varied from 70 to 43 °C. These new prepolymers could be linked to poly(ester‐urethane) by the chain extender 1,6‐hexamethylene diisocyanate. The poly(ester‐urethane) was amorphous, and the Tg was 76 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2449–2455, 2000  相似文献   

9.
Poly(urethane‐benzoxazine) films as novel polyurethane ( PU )/phenolic resin composites were prepared by blending a benzoxazine monomer ( Ba ) and PU prepolymer that was synthesized from 2,4‐tolylene diisocyanate (TDI) and polyethylene adipate polyol (MW ca. 1000) in 2 : 1 molar ratio. DSC of PU/Ba blend showed an exotherm with maximum at ca. 246 °C due to the ring‐opening polymerization of Ba, giving phenolic OH functionalities that react with isocyanate groups in the PU prepolymer. The poly(urethane‐benzoxazine) films obtained by thermal cure were transparent, with color ranging from yellow to pale wine with increase of Ba content. All the films have only one glass transition temperature (Tg ) from viscoelastic measurements, indicating no phase separation in poly(urethane‐benzoxazine) due to in situ polymerization. The Tg increased with the increase of Ba content. The films containing 10 and 15% of Ba have characteristics of an elastomer, with elongation at break at 244 and 182%, respectively. These elastic films exhibit good resilience with excellent reinstating behavior. The films containing more than 20% of Ba have characteristics of plastics. The poly(urethane‐benzoxazine) films showed excellent resistance to the solvents such as tetrahydrofuran, N,N‐dimethyl formamide, and N‐methyl‐2‐pyrrolidinone that easily dissolve PU s. Thermal stability of PU was greatly enhanced even with the incorporation of a small amount of Ba . © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4165–4176, 2000  相似文献   

10.
Poly[N‐isopropylacrylamide‐g‐poly(ethylene glycol)]s with a reactive group at the poly(ethylene glycol) (PEG) end were synthesized by the radical copolymerization of N‐isopropylacrylamide with a PEG macromonomer having an acetal group at one end and a methacryloyl group at the other chain end. The temperature dependence of the aqueous solutions of the obtained graft copolymers was estimated by light scattering measurements. The intensity of the light scattering from aqueous polymer solutions increased with increasing temperature. In particular, at temperatures above 40°C, the intensity abruptly increased, indicating a phase separation of the graft copolymer due to the lower critical solution temperature (LCST) of the poly(N‐isopropylacrylamide) segment. No turbidity was observed even above the LCST, and this suggested a nanoscale self‐assembling structure of the graft copolymer. The dynamic light scattering measurements confirmed that the size of the aggregate was in the range of several tens of nanometers. The acetal group at the end of the PEG graft chain was easily converted to the aldehyde group by an acid treatment, which was analyzed by 1H NMR. Such a temperature‐induced nanosphere possessing reactive PEG tethered chains on the surface is promising for new nanobased biomedical materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1457–1469, 2006  相似文献   

11.
The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L ‐lactide)–poly(ethylene glycol) (PLLA–PEG) diblock copolymers were investigated with wide‐angle X‐ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L ‐lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000–PEG5000 at a larger degree of supercooling was different from that of PLLA2500–PEG5000, PLLA5000–PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively. The PLLA block bonded chemically with the PEG block and increased the crystallization activation energy, but it provided nucleating sites for the crystallization of the PEG block, and the crystallization rate rose when it was heterogeneous nucleation. The number of melting peaks was three and one for the PEG homopolymer and the PEG block of the diblock copolymers, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3215–3226, 2006  相似文献   

12.
Novel poly(arylene ether)s, poly(arylene thioether)s, and poly(arylene sulfone)s were synthesized from the dihydroxy(imidoarylene) monomer 1 . The syntheses of poly(arylene ether)s were carried out in DMAc in the presence of anhydrous K2CO3 by a nucleophilic substitution reaction between the bisphenol and activated difluoro compounds. Poly(arylene thioether)s were synthesized according to the recently discovered one-pot polymerization reaction between a bis(N,N′-dimethyl-S-carbamate) and activated difluoro compounds in the presence of a mixture of Cs2CO3 and CaCO3. The bis(N,N′-dimethyl-S-carbamate) 3 was synthesized by the thermal rearrangement reaction of bis(N,N′-dimethylthiocarbamate) 2 , which was synthesized from 1 by a phase-transfer catalyzed reaction. The poly(arylene thioether)s were further oxidized to form poly(arylene sulfone)s, which would be very difficult, if not impossible, to synthesize by other methods. All of the polymers described have extremely high Tgs and thermal stability as determined from DSC and TGA analysis. Poly(arylene sulfone)s have the highest Tgs and they are in the range of 298–361°C. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1201–1208, 1998  相似文献   

13.
Epoxide and aldehyde end‐functionalized poly(ethylene glycol)s (PEGs) (Mw = 400, 1000, 3400, 5000, and 20,000) were grafted to poly(ethylene terephthalate) (PET) film substrates that contained amine or alcohol groups. PET‐PAH and PET‐PEI were prepared by reacting poly(allylamine) (PAH) and polyethylenimine (PEI) with PET substrates, respectively; PET‐PVOH was prepared by the adsorption of poly(vinyl alcohol) (PVOH) to PET substrates. Grafting was characterized and quantified by the increase of the intensity of the PEG carbon peak in the X‐ray photoelectron spectra. Grafting yield was optimized by controlling reaction parameters and was found to be substrate‐independent in general. Graft density consistently decreased as PEG chain length was increased. This is likely due to the higher steric requirement of higher molecular weight PEG molecules. Water contact angles of surfaces containing long PEG chains (3400, 5000, and 20,000) are much lower than those containing shorter PEG chains (400 and 1000). This indicates that longer PEG chains are more effective in rendering surfaces hydrophilic. Protein adsorption experiments were carried out on PET‐ and PEG‐modified derivatives using collagen, lysozyme, and albumin. After PEG grafting, the amount of protein adsorbed was reduced in all cases. Trends in surface requirements for protein resistance are: surfaces with longer PEG chains and higher chain density, especially the former, are more protein resistant; PEG grafted to surfaces containing branched or network polymers is not effective at covering the underlying substrate, and thus does not protect the entire surface from protein adsorption; and substrates containing surface charge are less protein‐resistant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5389–5400, 2004  相似文献   

14.
Poly(carbonate‐urethane) consisting of alternating carbonate and urethane moieties (poly(HC‐MDI)) was prepared by polyaddition of 4,4′‐diphenylmethane diisocyanate (MDI) and a monocarbonate diol bis(3‐hydroxypropyl)carbonate (HC), prepared by hydrolysis of a six‐membered spiroorthocarbonate 1,5,7,11‐tetraoxa‐spiro[5.5]undecane. The polyaddition proceeds without concomitant side reactions including carbonate exchange reaction and affords the desired poly(carbonate‐urethane). The hydrolysis and thermal behaviors of poly(HC‐MDI) were compared with those of the analogous polyurethane carrying no carbonate structure (poly(ND‐MDI)) prepared from MDI and 1,9‐nonanediol (ND). Although the glass transition behaviors are almost identical, poly(HC‐MDI) is less crystalline than poly(ND‐MDI). Poly(HC‐MDI) is more susceptible to hydrolysis than poly(ND‐MDI) probably due to the higher polarity and the lower crystallinity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2802–2808, 2006  相似文献   

15.
Four series of poly(o-hydroxy amide)s were prepared by the low-temperature solution polycondensation of the bis(ether benzoyl chloride)s extended from hydroquinone and its methyl-, tert-butyl-, or phenyl-substituted derivatives with three bis(o-aminophenol)s. Most of the poly(o-hydroxy amide)s displayed an amorphous nature, were readily soluble in various polar solvents such as N,N-dimethylacetamide (DMAc), and could be solution-cast into flexible and tough films. These poly(o-hydroxy amide)s had glass transition temperatures (Tg) in the range of 152–185°C and could be thermally cyclodehydrated into the corresponding polybenzoxazoles approximately in the region of 200–400°C, as evidenced by the DSC thermograms. The thermally converted benzoxazole polymers exhibited Tgs in the range of 215–247°C and did not show significant weight loss before 500°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2129–2136, 1999  相似文献   

16.
ABA-type block copolymers of poly(trimethylene carbonate) with poly(ethylene glycol) (Mn 6820), PTMC-b-PEG-b-PTMC, were synthesized by the ring-opening polymerization of 1,3-dioxan-2-one (trimethylene carbonate) in the presence of poly-(ethylene glycol) with stannous octoate catalyst, and the copolymers with various compositions were obtained. The PTMC-b-PEG-b-PTMC copolymers were characterized with Fourier transform infrared and nuclear magnetic resonance spectroscopies. The intrinsic viscosities of resulting copolymers increased with the increase of 1,3-dioxan-2-one content in feed while the molar ratio of monomer over catalyst kept constant. It has been observed that the glass transition temperature (Tg) of the PTMC segments in copolymers, recorded from differential scanning calorimetry, was dependent on the composition of copolymers. The melting temperature (Tm) of PEG blocks in copolymer was lower than that of PEG polymer, and then disappeared as the length of PTMC blocks increased. The results of dynamic contact angle measurement clearly revealed that the hydrophilicity of resulting copolymers increased greatly with the increase of PEG content in copolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 695–702, 1998  相似文献   

17.
Phase equilibrium studies for semiconcentrated solutions of rodlike poly(γ‐benzyl L ‐glutamate) having oligo(ethylene glycol) as side chains (PBLG‐g‐OEG) have been investigated. The phase‐boundary concentrations in isotropic and anisotropic phases for N,N‐dimethylformamide (DMF) solution of PBLG‐g‐OEG with short side chains (PBLG2‐g‐380) are higher than those for solution of PBLG‐g‐OEG with long side chains (PBLG2‐g‐770). The lattice theory and the scaled particle theory for nematic solution, which don't distinguish the molecular architecture of the rodlike polymer, cannot explain this experimental result. Repulsive interaction between rodlike polymers by means of the attached side chains is proposed for the molecular orientation of PBLG‐g‐OEG in anisotropic state in order to describe the experimental result. Ternary phase diagrams of PBLG‐g‐OEG/poly(ethylene glycol) (PEG)/DMF show that the miscibility of rodlike PBLG‐g‐OEG and coiled PEG is most enhanced in the system of PBLG2‐g‐770, which has longest and largest amount of side chains. This experimental observation is explained by using the calculation based on the lattice theory and the repulsive interaction of side chains proposed above. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1331–1340, 2000  相似文献   

18.
The hydrogen bonding and crystallization of a biodegradable poly(ester urethane) copolymer based on poly(L ‐lactide) (PLLA) as the soft segment were investigated by FTIR. On slow cooling from melt, the onset and the progress of the crystallization of the urethane hard segments were correlated to the position, width, and relative intensity of the hydrogen‐bonded N? H stretching band. The interconversion between the “free” and hydrogen‐bonded N? H and C?O groups in the urethane units in the process was also revealed by 2D correlation analysis of the FTIR data. The crystallization of the PLLA soft segments was monitored by the ester C?O stretching and the skeletal vibrations. It was revealed that the PLLA crystallization was restricted by the phase separation and the urethane crystallization, and at cooling rates of 10 °C/min or higher, the crystallization of the PLLA soft segments was prohibited. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 685–695, 2009  相似文献   

19.
Hyperbranched poly(ester urethanes) containing end isocyanate groups have been synthesized via the reaction of hyperbranched aliphatic polyesterpolydiols of three generations with tolylene diisocyanate. The interaction of these compounds with N,N-dimethylaminoethanol yields their functional derivatives. The polymers are characterized by functional analysis, 1H NMR and IR spectroscopy, and DSC. It has been demonstrated that the incorporation of urethane moieties leads to development of the microheterogeneous structure of hyperbranched polymers.  相似文献   

20.
仝维鋆 《高分子科学》2012,30(5):719-726
To improve the colloidal stability of bovine serum albumin(BSA) nanoparticles(NPs) in diverse mediums, poly(allylamine hydrochloride)(PAH)/sodium poly(4-styrene sulfonate)(PSS) multilayers and poly(allylamine hydrochloride)-graft-poly(ethylene glycol)(PAH-g-PEG) coating were coated on the surface of BSA NPs.Stabilities of the BSA NPs in diverse mediums with different surfaces were detected by dynamic light scattering(DLS).Multilayers and PAH-g-PEG coated BSA NPs can be well dispersed in various mediums with a narrow polydispersity index(PDI).The BSA NPs with the highest surface density of PEG show the best stability.The multilayers and PAH-g-PEG coating do not deter the pH-dependent loading and release property of BSA NPs.At pH 9,the encapsulation efficiency of doxorubicin reaches almost 99%,and the release rate at pH 5.5 is significantly higher than that at pH 7.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号