首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The imidazole covalently coordinated sandwich‐type heteropolytungstates Na9[{Na(H2O)2}3{M(C3H4N2)}3‐ (SbW9O33)2xH2O (M=NiII, x=32; M=CoII, x=32; M=ZnII, x=33; M=MnII, x=34) were obtained by the reaction of Na2WO4·2H2O, SbCl3·6H2O, NiCl2·6H2O [MnSO4·H2O, Co(NO3)2·6H2O, ZnSO4·7H2O] and imidazole at pH≈7.5. The structure of Na9[{Na(H2O)2}3{Ni(C3H4N2)}3(SbW9O33)2]·32H2O was determined by single crystal X‐ray diffraction. Polyanion [{Na(H2O)2}3{Ni(C3H4N2)}3(SbW9O33)2}3]9? has approximate C3v symmetry, imidazole coordinated six‐nuclear cluster [{Na(H2O)2}3{Ni(C3H4N2)}3]9+ is encapsulated between two (α‐SbW9O33)9?, the three rings of imidazole in the polyanion are perpendicular to the horizontal plane formed by six metals (Na‐Ni‐Na‐Ni‐Na‐Ni) in the central belt, and π‐stacking interactions exist between imidazoles of neighboring polyanions with dihedral angel of 60°. The compounds were also characterized by IR, UV‐Vis spectra, TG and DSC, and the thermal decomposition mechanism of the four compounds was suggested by TG curves.  相似文献   

2.
Phosphido- and Arsenido-bridged Dinuclear Complexes. Synthesis and Molecular Structure of (η5-C5H4R)2Zr{μ-P(SiMe3)2}2M(CO)4 (R = Me, M = Cr; R = H, M = Mo) and Synthesis of (η5-C5H5)2Zr{μ-As(SiMe3)2}2Cr(CO)4 The reaction of (η5-C5H4R)2Zr{E(SiMe3)2}2 with M(CO)4(NBD) (NBD = norbornadiene) yields the dinuclear phosphido- or arsenido-bridged complexes (η5-C5H4R)2Zr{μ-E(SiMe3)2}2M(CO)4 (R = Me, E = P, M = Cr ( 1 ); R = H, E = P, M = Mo ( 2 ); R = H, E = As, M = Cr ( 3 )). No formation of dinuclear complexes was observed in the reaction of (η5-C5H4Me)2Zr{P(SiMe3)2}2 with Ni(PEt3)4, Ni(CO)2(PPh3)2 or with NiCl2(PPh3)2 in the presence of Mg. Complexes 1 – 3 were characterised spectroscopically (i. r., n. m. r., m. s.), and X-ray structure investigations were carried out on 1 and 2 . The central four-membered ZrP2M ring is slightly puckered (dihedral angle between planes ZrP2/CrP2 14.7°, ZrP2/MoP2 14.2°). The Zr? P bond lengths are equivalent ( 1 : Zr? P1 2.654(4), Zr? P2 2.657(4) Å; 2 : Zr? P1 2.6711(9), Zr? P2 2.6585(7) Å), as are the M? P bond lengths (M = Cr ( 1 ): Cr? P1 2.513(4), Cr? P2 2.502(4) Å; M = Mo ( 2 ): Mo? P1 2.6263(7), Mo? P2 2.6311(10) Å). The long Zr ··· M distances of 3.414 Å (M = Cr ( 1 )) and 3.461 Å (M = Mo ( 2 )) indicate the absence of a metal-metal bond.  相似文献   

3.
The diorganotin compounds, [Me2Sn{OOP(OBun)2}2] (II), [Me2Sn{OSP(OBun)2}2] (III) and [Me2Sn{SSP(OBun)2}2] (IV), have been investigated by 13C, 31P and 119Sn solution state NMR as well as solid state NMR. On the basis of these studies it is suggested that the phosphate ligand acts in a symmetrical chelating fashion in II, while the ligands behave in an anisobidentate manner in III and IV.  相似文献   

4.
水热条件下,合成了三个新的配合物[Ni(en)3] (ndt) ·H2O 1, [Co(en)3] (ndt) ·H2O 2 和[Mn(en)3] (ndt) ·H2O 3。晶体结构通过X-射线单晶衍射进行了表征。三个配合物均属于单斜晶系,Cc空间群。[M(en)3]2+阳离子、ndt阴离子和结晶水分子通过氢键自组装出相同结构的三维网。通过紫外-可见-近红外漫反射光谱对这三个配合物的光吸收性能和能带进行了测定。  相似文献   

5.
Two [V15M6(OH)6O42(Cl)]7? (M = Si for 1, Ge for 2) cluster anions with protonated amines as counterions have been synthesized under hydrothermal conditions and characterized by FT-IR, energy dispersive spectroscopy, XPS, powder X-ray diffraction, thermogravimetric analysis (TGA), elemental analysis, and single-crystal X-ray analyses. Both compounds consist of {V15M6O42(OH)6(Cl)} (M = Si for 1, Ge for 2), which are derived from {V18O42} by substitution of three {VO5} square pyramids with three {Si2O5(OH)2/Ge2O5(OH)2} units. It represents the first example of cage-like polyoxovanadates (POVs) containing three (Si/Ge)2O5(OH)2 units. There are extensive hydrogen bonding interactions between POVs and organoamines in 1 and 2. Compound 1 presents a close-packed layer aggregate, while 2 exhibits the packing of six-membered rings with a 1-D channel. Magnetism measurements demonstrate the presence of strong antiferromagnetic interaction between VIV centers in 1.  相似文献   

6.
Syntheses of the copper and gold complexes [Cu{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] containing the homoleptic carbonyl cations [M{Fe(CO)5}2]+ (M=Cu, Au) are reported. Structural data of the rare, trimetallic Cu2Fe, Ag2Fe and Au2Fe complexes [Cu{Fe(CO)5}2][SbF6], [Ag{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] are also given. The silver and gold cations [M{Fe(CO)5}2]+ (M=Ag, Au) possess a nearly linear Fe-M-Fe’ moiety but the Fe-Cu-Fe’ in [Cu{Fe(CO)5}2][SbF6] exhibits a significant bending angle of 147° due to the strong interaction with the [SbF6] anion. The Fe(CO)5 ligands adopt a distorted square-pyramidal geometry in the cations [M{Fe(CO)5}2]+, with the basal CO groups inclined towards M. The geometry optimization with DFT methods of the cations [M{Fe(CO)5}2]+ (M=Cu, Ag, Au) gives equilibrium structures with linear Fe-M-Fe’ fragments and D2 symmetry for the copper and silver cations and D4d symmetry for the gold cation. There is nearly free rotation of the Fe(CO)5 ligands around the Fe-M-Fe’ axis. The calculated bond dissociation energies for the loss of both Fe(CO)5 ligands from the cations [M{Fe(CO)5}2]+ show the order M=Au (De=137.2 kcal mol−1)>Cu (De=109.0 kcal mol−1)>Ag (De=92.4 kcal mol−1). The QTAIM analysis shows bond paths and bond critical points for the M−Fe linkage but not between M and the CO ligands. The EDA-NOCV calculations suggest that the [Fe(CO)5]→M+←[Fe(CO)5] donation is significantly stronger than the [Fe(CO)5]←M+→[Fe(CO)5] backdonation. Inspection of the pairwise orbital interactions identifies four contributions for the charge donation of the Fe(CO)5 ligands into the vacant (n)s and (n)p AOs of M+ and five components for the backdonation from the occupied (n-1)d AOs of M+ into vacant ligand orbitals.  相似文献   

7.
Alkali Metal Tetraethinylozincates and ‐cadmates AI2M(C2H)4 (AI = Na — Cs, M = Zn, Cd): Synthesis, Crystal Structures, and Spectroscopic Properties By reaction of AIC2H (AI = Na — Cs) with divalent zinc and cadmium salts in liquid ammonia the alkali metal tetraethinylozincates and ‐cadmates AI2M(C2H)4 (M = Zn, Cd) were accessible as polycrystalline powders. While Na2M(C2H)4 is amorphous to X‐rays and the crystal structure of Cs2Zn(C2H)4 could not be solved up to now, the remaining compounds are isotypic to the already known crystal structures of the potassium compounds, as was deduced from powder diffraction with X‐rays and synchrotron radiation. They crystallise in the tetragonal space group I41a, contain [M(C2H)4]2— tetrahedra and show structural relationships to the scheelit and anatas structure types. Raman spectroscopic investigations confirm the existence of tetrahedral fragments with C‐C triple bonds in the alkali as well as in the amorphous alkaline earth metal compounds AIIM(C2H)4 (AII = Mg — Ba, M = Zn, Cd).  相似文献   

8.
Synthesis and Spectroscopic Characterization of Copper(II) and Nickel(II) Tricyanomethanide Complexes with Imidazoles – Crystal Structure of [Cu{C(CN)3}2(2-meiz)2] The copper(II) and nickel(II) tricyanomethanide complexes with imidazoles of the type [Cu{C(CN)3}2L4], [L = 2- or 4-methylimidazole (meiz)] and [M{C(CN)3}2L2] [M = Cu, L = imidazole (iz), 2- or 4-meiz; M = Ni, L = iz, 2- or 4-meiz] were prepared and characterized by electronic, infrared, and – some of them – by ESR spectroscopy. The structure [Cu{C(CN)3}2(2-meiz)2], solved by X-ray crystallographic analysis, shows a two-dimensional network with unsymmetric C(CN)3-bridges between the CuII atoms. Polymeric structures with bridging C(CN)3-groups were identified by means of spectroscopic methods also for the other [M{C(CN)3}2L2] complexes. On the other hand, for the complexes [M{C(CN)3}2L4] follow molecular structures, in which monodentate C(CN)3 ligands are present. All compounds under investigation show a tetragonal-bipyramidal geometry with various degree of tetragonal distortion.  相似文献   

9.
Compounds including the free or coordinated gas‐phase cations [Ag(η2‐C2H4)n]+ (n=1–3) were stabilized with very weakly coordinating anions [A]? (A=Al{OC(CH3)(CF3)2}4, n=1 ( 1 ); Al{OC(H)(CF3)2}4, n=2 ( 3 ); Al{OC(CF3)3}4, n=3 ( 5 ); {(F3C)3CO}3Al‐F‐Al{OC(CF3)3}3, n=3 ( 6 )). They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of ethene in CH2Cl2 solution. As a reference we also prepared the isobutene complex [(Me2C?CH2)Ag(Al{OC(CH3)(CF3)2}4)] ( 2 ). The compounds were characterized by multinuclear solution‐NMR, solid‐state MAS‐NMR, IR and Raman spectroscopy as well as by their single crystal X‐ray structures. MAS‐NMR spectroscopy shows that the [Ag(η2‐C2H4)3]+ cation in its [Al{OC(CF3)3}4]? salt exhibits time‐averaged D3h‐symmetry and freely rotates around its principal z‐axis in the solid state. All routine X‐ray structures (2θmax.<55°) converged within the 3σ limit at C?C double bond lengths that were shorter or similar to that of free ethene. In contrast, the respective Raman active C?C stretching modes indicated red‐shifts of 38 to 45 cm?1, suggesting a slight C?C bond elongation. This mismatch is owed to residual librational motion at 100 K, the temperature of the data collection, as well as the lack of high angular data owing to the anisotropic electron distribution in the ethene molecule. Therefore, a method for the extraction of the C?C distance in [M(C2H4)] complexes from experimental Raman data was developed and meaningful C?C distances were obtained. These spectroscopic C?C distances compare well to newly collected X‐ray data obtained at high resolution (2θmax.=100°) and low temperature (100 K). To complement the experimental data as well as to obtain further insight into bond formation, the complexes with up to three ligands were studied theoretically. The calculations were performed with DFT (BP86/TZVPP, PBE0/TZVPP), MP2/TZVPP and partly CCSD(T)/AUG‐cc‐pVTZ methods. In most cases several isomers were considered. Additionally, [M(C2H4)3] (M=Cu+, Ag+, Au+, Ni0, Pd0, Pt0, Na+) were investigated with AIM theory to substantiate the preference for a planar conformation and to estimate the importance of σ donation and π back donation. Comparing the group 10 and 11 analogues, we find that the lack of π back bonding in the group 11 cations is almost compensated by increased σ donation.  相似文献   

10.
Ligand Behaviour of P‐functional Organotin Halides: Nickel(II), Palladium(II), and Platinum(II) Complexes with Me2(Cl)SnCH2CH2PPh2 Me2(Cl)SnCH2CH2PPh2 ( 1 ) reacts with NiII, PdII, and PtII halides in molar ratio 2 : 1 forming the complexes [MX2{PPh2CH2CH2Sn(Cl)Me2}2] (M = Ni, Pd, Pt; X = Cl, Br) ( 3 – 6 , 9 , 10 ) ( 7 , 8 : M = Ni; Br instead of Cl). The nickel complexes were isolated and characterized both as the planar ( 3 , 5 , 7 ) and the tetrahedral ( 4 , 6 , 8 ) isomer. Crystal structure analyses and NMR data indicate for the planar nickel complexes 3 , 5 , 7 and [MCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 : M = Pd; 10 : M = Pt) the existence of intra and intermolecular M–Hal…Sn bridges. In a ligand : metal molar ratio of 3 : 1 the complexes [MéCl{PPh2CH2CH2SnCl2Me2}{PPh2CH2CH2Sn(Cl)Me2}2] ( 11 : M = Pd; 12 : M = Pt) are formed which represent intramolecular ion pairs. By dehalogenation of [PdCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 ) with sodium amalgam and graphite potassium (C8K), respectively, the palladacycles cis‐[Pd{PPh2CH2CH2SnMe2}2] ( 13 ) and trans‐[Pd(Cl)PPh2CH2CH2SnMe2{PPh2CH2CH2Sn(Cl)Me2}] ( 14 ) are formed. From the compounds 1 , 3 , 9 , 11 , and 12 the crystal structures are determined. All compounds are characterized by 1H, 31P, and 119Sn NMR spectroscopy.  相似文献   

11.
{[Cu2(L‐val)2(4,4′‐bipy)(H2O)2](NO3)2}n was synthesized and its crystal structure was determined by X‐ray diffraction. In the presence of 4,4′‐bipyridine, deprotoned L‐valine chelates CuII ions into coordination layers which were linked into a framework by hydrogen‐bonded chains resulting from nitrate anions and water molecules.  相似文献   

12.
Investigations of the Synthesis of [CpxSb{M(CO)5}2] (Cpx = Cp, Cp*; M = Cr, W) The reaction of CpSbCl2 with [Na2{Cr2(CO)10}] leads to the chlorostibinidene complex [ClSb{Cr(CO)5}2(thf)] ( 1 ), whereas the reaction of CpSbCl2 with [Na2{W2(CO)10}] results in the formation of the complexes [ClSb{W(CO)5}3] ( 2 ), [Na(thf)][Cl2Sb{W(CO)5}2] ( 3 ), [ClSb{W(CO)5}2(thf)] ( 4 ) and [Sb2{W(CO)5}3] ( 5 ). The stibinidene complex [CpSb{Cr(CO)5}2] ( 6 ) is obtained by the reaction of [ClSb{Cr(CO)5}2] with NaCp, while its Cp* analogue [Cp*Sb{Cr(CO)5}2] ( 7 ) is formed via the metathesis of Cp*SbCl2 with [Na2{Cr2(CO)10}]. The products 2 , 3 , 4 and 7 are additionally characterised by X‐ray structure analyses.  相似文献   

13.
Structure and magnetic properties of N‐diisopropoxyphosphorylthiobenzamide PhC(S)‐N(H)‐P(O)(OiPr)2 ( HLI ) and N‐diisopropoxyphosphoryl‐N′‐phenylthiocarbamide PhN(H)‐C(S)‐N(H)‐P(O)(OiPr)2 ( HLII ) complexes with the CoII cation of formulas [Co{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2] ( 2 ), [Co{PhC(S)‐N(H)‐P(O)(OiPr)2}2{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1a ) and [Co{PhC(S)‐N‐P(O)(OiPr)2}2}(2,2′‐bipy)] ( 3 ), [Co{PhC(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 4 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(2,2′‐bipy)] ( 5 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 6 ) were investigated. Paramagnetic shifts in the 1H NMR spectrum were observed for high‐spin CoII complexes with HLI,II , incorporating the S‐C‐N‐P‐O chelate moiety and two aromatic chelate ligands. Investigation of the thermal dependence of the magnetic susceptibility has shown that the extended materials 1‐2 and 6 show ferromagnetic exchange between distorted tetrahedral ( 1 , 2 ) or octahedral ( 1a , 6 ) metal atoms whereas 3 and 5 show antiferromagnetic properties. Compound 4 behaves as a spin‐canted ferromagnet, an antiferromagnetic ordering taking place below a critical temperature, Tc = 115 K. Complexes 1 and 1a were investigated by single crystal X‐ray diffraction. The cobalt(II) atom in complex 1 resides a distorted tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated ligands. Complex 1a has a tetragonal‐bipyramidal structure, Co(Oax)2(Oeq)2(Seq)2, and two neutral ligand molecules are coordinated in the axial positions through the oxygen atoms of the P=O groups. The base of the bipyramid is formed by two anionic ligands in the typical 1,5‐O,S coordination mode. The ligands are in a trans configuration.  相似文献   

14.
By reaction of MIICl2·x H2O (M = Fe (x = 4), Co, Ni (x = 6)) and LiOH·H2O in diethylene glycol (DEG) rod‐like crystals of the composition MII4Cl4(OCH2CH2OCH2CH2OH)4 are formed. According to X‐ray diffraction data obtained by both, single crystals and powders, the CoII and NiII compounds crystallize monoclinic with C2/c (CoII4Cl4(OCH2CH2OCH2CH2OH)4 ( 1 ): a = 2084.1(4), b = 919.0(2), c = 1754.0(4) pm, β = 124.3(1)°, Z = 4; NiII4Cl4(OCH2CH2OCH2CH2OH)4 ( 2 ): a = 2055.2(4), b = 932.1(2), c = 1727.4(4) pm, β = 125.2(1)°, Z = 4), whereas FeII4Cl4(OCH2CH2OCH2CH2OH)4 ( 3 ) crystallizes tetragonal with (a = 1251.4(2), c = 915.3(2) pm, Z = 2). All compounds exhibit analogous molecular structures which are built of a heterocubane‐type core consisting of four metal ions and four deprotonated oxygen atoms of four coordinated diethylene glycol molecules. Neutrality of charge is realized by additional coordination of four chloride anions. In addition to the structural characterization, the thermal and magnetical properties of the title compounds are investigated in detail.  相似文献   

15.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXII. The Formation of [η2‐{tBu–P=P–SiMe3}Pt(PR3)2] from (Me3Si)tBuP–P=P(Me)tBu2 and [η2‐{C2H4}Pt(PR3)2] (Me3Si)tBuP–P = P(Me)tBu2 reacts with [η2‐{C2H4}Pt(PR3)2] yielding [η2‐{tBu–P=P–SiMe3}Pt(PR3)2]. However, there is no indication for an isomer which would be the analogue to the well known [η2‐{tBu2P–P}Pt(PPh3)2]. The syntheses and NMR data of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] and [η2‐{tBu–P=P–SiMe3}Pt(PMe3)2] as well as the results of the single crystal structure determination of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] are reported.  相似文献   

16.
A new series of cationic heterodinuclear complexes, [M1M2Cl2(meso-dpmppp)(RNC)2]PF6 (M1=Ni, M2=Rh, R=tBu ( 1 a ); M1=Pd, M2=Rh, R=tBu ( 2 a ), Xyl ( 2 b ); M1=Pt, M2=Rh, R=tBu ( 3 a ), Xyl ( 3 b ); M1=Pd, M2=Ir, R=tBu ( 4 a )), supported by a tetradentate phosphine ligand, meso-Ph2PCH2P(Ph)(CH2)3P(Ph)CH2PPh2 (meso-dpmppp), were synthesized by stepwise reactions of meso-dpmppp with NiCl2 ⋅ 6H2O or MCl2(cod) (M=Pd, Pt), forming mononuclear metalloligands of [M1Cl2(meso-dpmppp)], and with [M2Cl(cod)]2 (M2=Rh, Ir) and RNC (R=tBu, Xyl) in the presence of [NH4][PF6]. The related neutral PdRh complex, [PdRhCl3(meso-dpmppp)(XylNC)] ( 5 ), was also prepared. The structures of 1 – 5 were determined by X-ray analyses to contain two square planar d8 metal centers with face-to-face arrangement, where meso-dpmppp supports M1 and M2 metal ions in cis/trans-P,P coordination mode, combining cis-{M1P2Cl2} and trans-{M2P2(CNR)2} units. Complexes 1 – 4 showed an intence characteristic absorption around 422–464 nm derived from RhI→RNC MLCT transition (HOMO→LUMO+1), which are influenced by changing M1 (NiII, PdII, PtII) metal ions since HOMO composed of dσ* orbitals appreciably destabilized by changing M1 from Ni to Pd, and Pt. The electronic structures of 1 a – 4 a were investigated on the basis of DFT calculations and NBO analyses to show weak but noticeable d8–d8 metallophilic interaction as empirical dispersion energy of 0.9–1.5 kcal/mol without M1–M2 covalent bonding interaction. In addition, 1 – 5 were utilized as catalysts for hydrosilylation of styrene, and the NiRh complex 1 a was found to show higher activity and chemo- and regioselectivity compared with 2 – 5 .  相似文献   

17.
Three adipato bridged mixed ligand catena complexes {[M(phen)(H2O)]‐(C6H8O4)2/2} with M = NiII ( 1 ), CuII ( 2 ), ZnII ( 3 ) were synthesized. Structure determination based on X‐ray diffraction shows that they crystallize isostructurally in the monoclinic space group C2/c (no. 15) with cell dimensions of: 1 a = 22.451(4)Å, b = 9.041(1)Å, c = 17.440(2)Å, β = 103.41(1)°, U = 3443.4(9)Å3, Z = 8; 2 a = 22.479(2)Å, b = 9.067(1)Å, c = 17.494(3)Å, β = 103.67(1)°, U = 3464.6(8)Å3, Z = 8; 3 a = 22.635(3)Å, b = 9.052(1)Å, c = 17.571(3)Å, β = 103.24(1)°, U = 3504.5(9)Å3, Z = 8. The crystal structure consists of 1D {[M(phen)(H2O)]‐(C6H8O4)2/2} zigzag chains, in which the metal atoms are all octahedrally coordinated by two N atoms of one phen ligands and four O atoms of one H2O molecule and two adipato ligands. The zigzag chains are held together by interchain π‐π stacking interactions and interchain hydrogen bonds.  相似文献   

18.
Metal Pseudohalides. XL. Dicyanamido Metallates [M{N(CN)2}4]2? of Palladium(II) and Platinum(II) The synthesis of homologeous tetrakis-(dicyanamido) metallates(II), [M{N(CN)2}4]2? is reported. The coordination type of the ambivalent dicyanamide ligand is discussed on the basis of the i.r. and n.m.r. spectra of the new complexes.  相似文献   

19.
In the title complex, [Ag2Cd(CN)4(C12H12N2)2]·H2O or cis‐[Cd{Ag(CN)2}2(5,5′‐dmbpy)2]·H2O, where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridyl, the asymmetric unit consists of a discrete neutral [Cd{Ag(CN)2}2(5,5′‐dmbpy)2] unit and a solvent water molecule. The CdII cation is coordinated by two bidentate chelate 5,5′‐dmbpy ligands and two monodentate [AgI(CN)2] anions, which are in a cis arrangement around the CdII cation, leading to an octahedral CdN6 geometry. The overall structure is stabilized by a combination of intermolecular hydrogen bonding, and AgI...AgI and π–π interactions, forming a three‐dimensional supramolecular network.  相似文献   

20.
Hexaazatrianthracene (HATA) and hexaazatriphenylenehexacarbonitrile {HAT(CN)6} are reduced by metallic iron in the presence of crystal violet (CV+)(Cl). Anionic ligands are produced, which simultaneously coordinate three FeIICl2 to form (CV+)2{HATA ⋅ (FeIICl2)3}2− ⋅ 3 C6H4Cl2 ( 1 ) and (CV+)3{HAT(CN)6. (FeIICl2)3}3− ⋅ 0.5CVCl ⋅ 2.5 C6H4Cl2 ( 2 ). High-spin (S=2) FeII atoms in both structures are arranged in equilateral triangles at a distance of 7 Å. An antiferromagnetic exchange is observed between FeII in {HATA ⋅ (FeIICl2)3}2− ( 1 ) with a Weiss temperature (Θ) of −80 K, the PHI estimated exchange interaction (J) is −4.7 cm−1. The {HAT(CN)6 ⋅ (FeIICl2)3}3− assembly is obtained in 2 . The formation of HAT(CN)6.3− is supported by the appearance of an intense EPR signal with g=2.0037. The magnetic behavior of 2 is described by a strong antiferromagnetic coupling between the FeII and HAT(CN)6.3− spins with J1=−164 cm−1 (−2 J formalism) and by a weaker antiferromagnetic coupling between the FeII spins with J2=−15.4 cm−1. The stronger coupling results in the spins of the three FeIICl2 units to be aligned parallel to each other in the assembly. As a result, an increase of the χMT values is observed with the decrease of temperature from 9.82 at 300 K up to 15.06 emu ⋅ K/mol at 6 K, and the Weiss temperature is also positive being at +23 K. Thus, a change in the charge and spin state of the HAT-type ligand to ⋅3 results in ferromagnetic alignment of the FeII spins, yielding a high-spin (S=11/2) system. DFT calculations showed that, due to the high symmetry and nearly degenerated LUMO of both HATA and HAT(CN)6, their complexes with FeIICl2 have a variety of closely lying excited high-spin states with multiplicity up to S=15/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号