首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
We consider the coupling of dual‐mixed finite elements and boundary elements to solve a mixed Dirichlet–Neumann problem of plane elasticity. We derive an a‐posteriori error estimate that is based on the solution of local Dirichlet problems and on a residual term defined on the coupling interface. The general error estimate does not make use of any special finite element or boundary element spaces. Here the residual term is given in a negative order Sobolev norm. In practical applications, where a certain boundary element subspace is used, this norm can be estimated by weighted local L2‐norms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
The finite element method and the boundary element method areamong the most frequently applied tools in the numerical treatmentof partial differential equations. However, their propertiesappear to be complementary: while the boundary element methodis appropriate for the most important linear partial differentialequations with constant coefficients in bounded or unboundeddomains, the finite element method seems to be more appropriatefor inhomogeneous or even nonlinear problems. but is somehowrestricted to bounded domains. The symmetric coupling of thetwo methods inherits the advantages of both methods. This paper treats the symmetric coupling of finite elementsand boundary elements for a model transmission problem in twoand three dimensions where we have two domains: a bounded domainwith nonlinear, even plastic material behaviour, is surroundedby an unbounded, exterior, domain with isotropic homogeneouslinear elastic material. Practically. the coupling is performedsuch that the boundary element method contributes a macro-element,like a large finite element, within a standard finite elementanalysis program. Emphasis is on two-dimensional problems wherethe approach using the Poincaré-Steklov operator seemsto be impossible at first glance. E-mail: cc{at}numerik.uni-kiel.de  相似文献   

3.
Summary. This paper analyzes the rate of convergence of the h-p version of the coupling of the finite element and boundary element method for transmission problems with a linear differential operator with variable coefficients in a bounded polyhedral domain and with constant coefficients in the exterior domain . This procedure uses the variational formulation of the differential equation in and involves integral operators on the interface between and . The finite elements are used to obtain approximate solutions of the differential equation in and the boundary elements are used to obtain approximate solutions of the integral equations. For given piecewise analytic data we show that the Galerkin solution of this coupling procedure converges exponentially fast in the energy norm if the h-p version is used both for finite elements and boundary elements. Received February 10, 1996 / Revised version received April 4, 1997  相似文献   

4.
We study a system composed of a nonlinear Stokes flow in one subdomain coupled with a nonlinear porous medium flow in another subdomain. Special attention is paid to the mathematical consequence of the shear-dependent fluid viscosity for the Stokes flow and the velocity-dependent effective viscosity for the Darcy flow. Motivated by the physical setting, we consider the case where only flow rates are specified on the inflow and outflow boundaries in both subdomains. We recast the coupled Stokes–Darcy system as a reduced matching problem on the interface using a mortar space approach. We prove a number of properties of the nonlinear interface operator associated with the reduced problem, which directly yield the existence, uniqueness and regularity of a variational solution to the system. We further propose and analyze a numerical algorithm based on mortar finite elements for the interface problem and conforming finite elements for the subdomain problems. Optimal a priori error estimates are established for the interface and subdomain problems, and a number of compatibility conditions for the finite element spaces used are discussed. Numerical simulations are presented to illustrate the algorithm and to compare two treatments of the defective boundary conditions.  相似文献   

5.
In this paper, the p-version finite element method and its fictitious domain extension, the finite cell method, are extended to the finite strain J2 plasticity. High-order shape functions are used for the finite element approximation of volume-preserving plastic dominated deformations. The accuracy and efficiency of p-version elements and cells in the finite plastic strain range are evaluated by the computation of two benchmark problems. It is shown that they provide locking free behavior and simplified meshing. These results are verified in comparison with the results of h-version elements in F-bar formulation. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The coupling of finite elements and boundary elements is analyzed, where in the FEM domain we assume an incompressible elastic material governed by a uniformly monotone operator and use a Stokes‐type mixed FEM. In the BEM domain, linear elasticity is considered. We prove existence and uniqueness of the solution and quasi‐optimal convergence of a Galerkin method. We derive an a posteriori error estimator of explicit residual type. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 79–92, 2001  相似文献   

7.
Piezoelectric materials are one of the most prominent smart materials due to their strong electromechanical coupling behaviour. Ferroelectric ceramics behave like piezoelectric materials under low electrical and mechanical loads, but exhibit pronounced nonlinear response at higher loads due to microscopic domain switching. Modern smart devices consist of complex geometries that may force the ferroelectrics employed within them to experience higher fields than they were originally designed for, so that the material responds within its nonlinear region. Hence, models predicting the nonlinear effects of ferroelectrics under complex loading cases are important from the design point of view. Within standard finite element models dealing with electromechanical problems, each grain may be subdiscretized by several finite elements. This problem can be approximated or rather overcome by a polygonal finite element method, where each grain is modelled by solely one single finite element. In this contribution, a micromechanically motivated switching model for ferroelectric ceramics, as based on volume fraction concepts, is combined with polygonal finite element approach. Related representative numerical examples allow to further study and understand the nonlinear response of this material under complex loading cases. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Summary. This paper introduces a scheme for the numerical solution of a model for two turbulent flows with coupling at an interface. We consider a variational formulation of the coupled model, where the turbulent kinetic energy equation is formulated by transposition. We prove the convergence of the approximation to this formulation for 2D flows by piecewise affine triangular elements. Our main contribution is to prove that the standard Galerkin - finite element approximation of the Laplace equation approximates in L2 norm its solution by transposition, for data with low smoothness. We include some numerical tests for simple geometries that exhibit the behaviour predicted by our analysis.Mathematics Subject Classification (2000): 65 N30, 76M10Revised version received March 24, 2003This research was partially supported by Spanish Government REN2000-1162-C02-01 and REN2000-1168-C02-01 grants  相似文献   

9.
In this paper, based on the Naghdi shell model, we analyze the uniform convergence of mixed finite element methods for cylindrical shell problems using macroelement techniques. We show that Taylor–Hood elements p 2-P 1 and P 1 iso P 2 are locking free elements for the model problems. Optimal error estimates are presented with these elements. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The mixed-dimensional coupling of finite shells and 3D boundary elements is presented. A stiffness formulation for the boundary element domain is generated by the Symmetric Galerkin Boundary Element Method and is assembled to the global finite element system. Multipoint constraints are derived in an integral sense by equating the work at the coupling interface. They are evaluated numerically during the analysis and avoid spurious stress concentrations also for curved interfaces. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Summary. Both mixed finite element methods and boundary integral methods are important tools in computational mechanics according to a good stress approximation. Recently, even low order mixed methods of Raviart–Thomas-type became available for problems in elasticity. Since either methods are robust for critical Poisson ratios, it appears natural to couple the two methods as proposed in this paper. The symmetric coupling changes the elliptic part of the bilinear form only. Hence the convergence analysis of mixed finite element methods is applicable to the coupled problem as well. Specifically, we couple boundary elements with a family of mixed elements analyzed by Stenberg. The locking-free implementation is performed via Lagrange multipliers, numerical examples are included. Received February 21, 1995 / Revised version received December 21, 1995  相似文献   

12.
In this paper we analyze the coupling of local discontinuous Galerkin (LDG) and boundary element methods as applied to linear exterior boundary value problems in the plane. As a model problem we consider a Poisson equation in an annular polygonal domain coupled with a Laplace equation in the surrounding unbounded exterior region. The technique resembles the usual coupling of finite elements and boundary elements, but the corresponding analysis becomes quite different. In particular, in order to deal with the weak continuity of the traces at the interface boundary, we need to define a mortar-type auxiliary unknown representing an interior approximation of the normal derivative. We prove the stability of the resulting discrete scheme with respect to a mesh-dependent norm and derive a Strang-type estimate for the associated error. Finally, we apply local and global approximation properties of the subspaces involved to obtain the a priori error estimate in the energy norm.

  相似文献   


13.
The symmetric coupling of mixed finite element and boundaryelement methods is analysed for a model interface problem withthe Laplacian. The coupling involves a further continuous ansatzfunction on the interface to link the discontinuous displacementfield to the necessarily continuous boundary ansatz function.Quasi-optimal a priori error estimates and sharp a posteriorierror estimates are established which justify adaptive mesh-refiningalgorithms. Numerical experiments prove the adaptive couplingas an efficient tool for the numerical treatment of transmissionproblems.  相似文献   

14.
In this article, we consider a class of unfitted finite element methods for scalar elliptic problems. These so-called CutFEM methods use standard finite element spaces on a fixed unfitted triangulation combined with the Nitsche technique and a ghost penalty stabilization. As a model problem we consider the application of such a method to the Poisson interface problem. We introduce and analyze a new class of preconditioners that is based on a subspace decomposition approach. The unfitted finite element space is split into two subspaces, where one subspace is the standard finite element space associated to the background mesh and the second subspace is spanned by all cut basis functions corresponding to nodes on the cut elements. We will show that this splitting is stable, uniformly in the discretization parameter and in the location of the interface in the triangulation. Based on this we introduce an efficient preconditioner that is uniformly spectrally equivalent to the stiffness matrix. Using a similar splitting, it is shown that the same preconditioning approach can also be applied to a fictitious domain CutFEM discretization of the Poisson equation. Results of numerical experiments are included that illustrate optimality of such preconditioners for the Poisson interface problem and the Poisson fictitious domain problem.  相似文献   

15.
We aim to approximate contrast problems by means of a numerical scheme which does not require that the computational mesh conforms with the discontinuity between coefficients. We focus on the approximation of diffusion-reaction equations in the framework of finite elements. In order to improve the unsatisfactory behavior of Lagrangian elements for this particular problem, we resort to an enriched approximation space, which involves elements cut by the interface. Firstly, we analyze the H1-stability of the finite element space with respect to the position of the interface. This analysis, applied to the conditioning of the discrete system of equations, shows that the scheme may be ill posed for some configurations of the interface. Secondly, we propose a stabilization strategy, based on a scaling technique, which restores the standard properties of a Lagrangian finite element space and results to be very easily implemented. We also address the behavior of the scheme with respect to large contrast problems ending up with a choice of Nitsche?s penalty terms such that the extended finite element scheme with penalty is robust for the worst case among small sub-elements and large contrast problems. The theoretical results are finally illustrated by means of numerical experiments.  相似文献   

16.
We describe in this paper a finite element method for the solution of viscous incompressible flow problems which incorporates an approximate form of the incompressibility condition automatically into the finite element basis. Several examples of such finite elements are presented and applied to a simple test problem.  相似文献   

17.
We derive electromagnetic finite elements based on a variational principle that uses the electromagnetic four-potential as primary variable. This choice is used to construct elements suitable for downstream coupling with mechanical and thermal finite elements for the analysis of electromagnetic/mechanical systems that involve superconductors. The main advantages of the four-potential as a basis for finite element formulation are: the number of degrees of freedom per node remains modest as the problem dimensionality increases, jump discontinuities on interfaces are naturally accomodated, and statics as well as dynamics may be treated without any a priori approximations. The new elements are tested on an axisymmetric problem under steady-state forcing conditions. The results are in excellent agreement with analytical solutions.  相似文献   

18.
The scaled boundary finite element method (SBFEM) is a semi-analytical method in which only the boundary is discretized. The results on the boundary are scaled into the domain with respect to a scaling center which must be “visible” from the whole boundary. For beam-like problems the scaling center can be selected at infinity and only the cross-section is discretized. Two new elements for thin-walled beams have been developed on the basis of the first order shear deformation theory. The beam sections are considered to be multilayered laminate plates with arbitrary layup. The arbitrary cross-section is discretized with beam elements of Timoshenko type. Using the virtual work principle gives the SBFEM equation, which is a system of differential equations of a gyroscopic type. The solution is calculated using the matrix exponential function. The elements have been tested and compared with a finite element model and they give good results. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In quasistatic solid mechanics the spatial as well as the temporal domain need to be discetized. For the spatial discretization usually elements with linear shape functions are used even though it has been shown that generally the p-version of the finite elemente method yields more effective discretizations, see e.g. [1], [2]. For the temporal discretization diagonal-implicit, see e.g. [4], and especially linear-implicit Runge-Kutta schemes, see e.g. [5], [6], have for smooth problems proven to be superior to the frequently applied Backward-Euler scheme (BE). Thus an approach combining the p-version of the finite element method with linear-implicit Runge-Kutta schemes, so-called Rosenbrock-type methods, is presented. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
本文旨在综述我们小组近二十年来在边界元方法这一领域的一些研究成果,在简要介绍边界元方法的基本思想后,主要介绍了一类非线性界面问题的有限元-边界元耦合方法、求解电磁散射问题的有限元-边界元耦合方法和超奇异积分的一类计算方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号