首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synthesis and Crystal Structures of the Calcium Iridium Silicides Ca3Ir4Si4 and Ca2Ir2Si The new compounds Ca3Ir4Si4 und Ca2Ir2Si were prepared by reaction of the elemental components in sealed tantalum ampoules at 1200 °C. Their structures were determined from X‐ray single crystal data. Ca3Ir4Si4(cubic, space group I4¯3m, a = 7.4171(2)Å, Z = 2) crystallizes with the Na3Pt4Ge4 type structure. For Ca2Ir2Si (monoclinic, space group C2/c, a = 9.6567(5)Å, b = 5.8252(2)Å, c = 7.3019(4)Å, β = 100.212(2)°, Z = 4) a new structure was found. Chains of edge sharing, heavily distorted SiIr4‐tetrahedra (Ir‐Si: 2.381 and 2.414Å) are connected via short Ir—Ir‐contacts (2.640Å) to form an open Ir/Si‐framework accommodating a three‐dimensional arrangement of calcium atoms (Ca—Ca: 3.413 ‐ 3.948Å).  相似文献   

2.
Synthesis and Crystal Structures of α‐, β‐Ba3(PS4)2 and Ba3(PSe4)2 Ba3(PS4)2 and Ba3(PSe4)2 were prepared by heating mixtures of the elements at 800 °C for 25 h. Both compounds were investigated by single crystal X‐ray methods. The thiophosphate is dimorphic and undergoes a displacive phase transition at about 75 °C. Both modifications crystallize in new structure types. In the room temperature phase (α‐Ba3(PS4)2: P21/a; a = 11.649(3), b = 6.610(1), c = 17.299(2) Å, β = 90.26(3)°; Z = 4) three crystallographically independent Ba atoms are surrounded by ten sulfur atoms forming distorted polyhedra. The arrangement of the PS4 tetrahedra, isolated from each other, is comparable with the formation of the SO42? ions of β‐K2SO4. In β‐Ba3(PS4)2 (C2/m; a = 11.597(2), b = 6.727(1), c = 8.704(2) Å; β = 90.00(3)°; Z = 2) the PS4 tetrahedra are no more tilted along [001], but oriented parallel to each other inducing less distorted tetrahedra and polyhedra around the Ba atoms, respectively. Ba3(PSe4)2 (P21/a; a = 12.282(2), b = 6.906(1), c = 18.061(4) Å; β = 90.23(3)°; Z = 4) is isotypic to α‐Ba3(PS4)2 and no phase transition could be detected up to about 550 °C.  相似文献   

3.
On BaTiVO4 and SrTiVO4 BaTiVO4 and SrTiVO4 were prepared in closed systems by solid state reactions. They crystallize with orthorhombic symmetry (BaTiVO4: space group D-Pmnb; a = 5.889; b = 7.889; c ?10.397 Å; Z = 4; SrTiVO4: space group D-P21,21,21,21; a = 5.855; b = 7.572; c = 10.012 Å; Z = 4) and belong to β-K2SO4-type. The ordered occupation of point positions by Ba2+ and Tl+ as well as the decrease in symmetry of SrTiVO4 are discussed.  相似文献   

4.
Synthesis and Crystal Structure of Sr2Rh7P6 Single crystals of Sr2Rh7P6 were obtained by reaction of the elements in molten lead at 1100 °C and investigated by X-ray methods. The compound crystallizes tetragonally (a = 11.080(2), c = 4.098(1) Å) and forms a crystal structure (P 4 21m; Z = 2) with ThCr2Si2 analogous units, which are linked with each other in a new way. Therefore the RhP4 tetrahedra form bands of edge sharing chains parallel to [001] anstead of layers as in the ThCr2Si2 type structure. The arrangement enables a part of the P atoms to form short P–P distances of 2,26 Å and space for additional Rh atoms with a likewise distorted tetrahedral coordination of P atoms is obtained.  相似文献   

5.
Synthesis and Crystal Structures of New Phosphorus‐bridged Bimetallic Clusters of the Elements Mercury and Iron The reaction of [Fe(CO)4(HgX)2] (X = Cl, Br) with P(SiMe3)2tBu in the presence of tertiary phosphines and phosphinium salts leads to the ionic compounds [PPh4]2[Hg12{Fe(CO)4}8(PtBu)4X2] (X = Cl, Br) ( 1 , 2 ). If [Fe(CO)4(HgX)2] reacts with P(SiMe3)2tBu the polymeric polynuclear complex [Hg15{Fe(CO)4}3(PtBu)8Br8]n ( 3 ) as well as the twenty mercury‐ and eight iron‐atoms containing [Hg20{Fe(CO)4}8(PtBu)10X4]‐clusters (X = Br, Cl) ( 4 , 5 ) are formed. The reaction of [Fe(CO)4(HgX)2] with LiPPh2 yields to the phosphanido‐bridged [Hg4{Fe(CO)4}2(PPh2)2Cl2] ( 6 ), where as the use of LiP(SiMe3)Ph leads to the diphosphinidene‐bridged cluster [Li(thf)4]2[Hg10{Fe(CO)4}6(P2Ph2)2Br6] ( 7 ). The structures of the compounds 1–7 were characterized by X‐ray single crystal structure analysis.  相似文献   

6.
A new compound of the formula SrBeLa2O5 was prepared by high temperature technique. Single crystal X-ray investigations led to orthorhombic symmetry (a=9.730,b=7.377,c=6.687 Å, space group: D 2h 16 -Pnma,Z=4). SrBeLa2O5 shows a typical tunnel structure of a three-dimensional connection of Sr, La/O-prisms, related to a distortedKgomé-network. The tunnels are occupied by La3+- and Be2+-ions. A detailed discussion of the polyhedra, their connection, and the statistical distribution of Sr2+ and La3+ within the trigonal O2–-prisms are given.
  相似文献   

7.
Synthesis and Crystal Structure of the First Oxonitridoborate — Sr3[B3O3N3] The cyclotri(oxonitridoborate) Sr3[B3O3N3] was synthesized at 1450 °C as coarsely crystalline colourless crystals by the reaction of SrCO3 with poly(boron amide imide) using a radiofrequency furnace. The structure was solved by single‐crystal X‐ray diffractometry (Sr3[B3O3N3], Z = 4, P21/n, a = 663.16(2), b = 786.06(2), c = 1175.90(3) pm, η = 92.393(1)°, R1= 0.0441, wR2 = 0.1075, 1081 independent reflections, 110 refined parameters). Besides Sr2+ there are hitherto unknown cyclic [B3O3N3]6— ions (B—N 143.7(10) — 149.1(9) pm, B—O 140.5(8) — 141.4(8) pm).  相似文献   

8.
Ternary Phosphides and Arsenides of Rhodium and Iridium: Synthesis and Crystal Structures Single crystals of eight new compounds were prepared by heating mixtures of the elements in a lead flux. They were investigated by X‐ray methods. Ca2Ir12P7 (a = 9.512(1), c = 3.923(1) Å)is an additional representative of the Zr2Rh12P7 type structure, micro domains required refinements of the structural parameters in space group P63/m. Ca5Rh19P12 (a = 12.592(1), c = 3.882(1) Å) and Ca5Ir19P12 (a = 12.577(2), c = 3.954(1) Å) crystallize with the Ho5Ni19P12 type structure (P6¯2m; Z = 1), whereas the compounds A6Rh30X19 form a slightly modified structure of the Yb6Co30P19 type. The lattice constants are: Ca6Rh30P19: a = 15.532(1) Å, c = 3.784(1) Å Sr6Rh30As19: a = 16.135(2) Å, c = 3.916(1) Å Eu6Rh30P19: a = 15.566(1) Å, c = 3.821(1) Å Eu6Rh30As19: a = 16.124(1) Å, c =5 3.903(3) Å Yb6Rh30P19: a = 5 15.508(1) Å, c =5 3.770(1) Å Because one of the four non‐metal atoms, located on different crystallographic sites, is disordered along [001] micro domains are formed. Therefore the parameters were not refined in space group P6¯ (Yb6Rh30P19 type), but in space group P63/m. The metal:non‐metal ratio of all compounds is in the range of 2:1. Accordingly most of the non‐metal atoms are coordinated by nine metal atoms, which form tricapped trigonal prisms. These polyhedra are combined with each other in a different way.  相似文献   

9.
Inhaltsübersicht. Einkristalle von NaInBr4 und NaInI4 erhält man aus Gemengen der binären Komponenten durch langsames Abkühlen der Schmelze. NaInBr4 gehört zum NaAlCl4-Typ: Orthorhombisch, P212121, Z = 4; a = 1108,1(1); b = 1050,7(1); c = 676,1(1) pm. NaInI4 ist isotyp mit LiAlCl4: Monoklin, P21/c, Z = 4; a = 852,1(2); b = 766,1(2); c = 1558,3(3) pm; β = 92,65(2)°. In beiden Strukturen treten annähernd tetraedrische Baugruppen [InX4] (X = Br, I) auf. Die Koordinationszahl von Na+ ist C.N. = 6 (NaInI4; leicht verzerrt oktaedrisch) bzw. C.N. = 6+1+1 (NaInBr4; verzerrtes, doppelt bekapptes Prisma). Synthesis and Crystal Structures of NaInBr4 and NaInI4 Single crystals of NaInBr4 and NaInI4 are obtained from mixtures of the binary components by slow cooling of the melts. NaInBr4 belongs to the NaAlCl4 type of structure: Ortho-rhombic, P212121, Z = 4, a = 1108.1(1), b = 1050.7(1), c = 676.1(1) pm. NaInI4 is isotypic with LiAlCl4: Monoclmic, P21/c, Z = 4, a = 852.1(2), b = 766.1(2), c = 1558.3(3) pm, β = 92.65(2)°. Almost tetrahedral polyhedra [InX4] (X = Br, I) are characteristic for both structures. The coordination number of Na+ is C.N. = 6 (NaInI4; slightly distorted octahedron) and C.N. = 6+1+1 (NaInBr4; distorted bicapped trigonal prism), respectively.  相似文献   

10.
Synthesis and Crystal Structure of Ba6ZnIn2Cl20 Colourless single crystals of Ba6ZnIn2Cl20 are obtained from a 6 : 3 : 2 molar mixture of BaCl2, ZnCl2 and InCl3 at 420 °C in a Pyrex ampoule. It crystallizes with the monoclinic space group P21/c (Z = 4) with a = 1957.8(2), b = 1014.69(8), c = 1778.7(2) pm, β = 110.94(1)°, in a new structure. Zn2+ is surrounded tetrahedrally and In3+ octahedrally by chloride ions. Half of the [InCl6] octahedra are isolated from each other, the other half shares common edges to form [In2Cl10] double octahedra. Ba2+ has coordination numbers of eight and nine. There are chloride ions that do not belong to Zn2+ or In3+ so that the formula may be written as Ba12Cl10[ZnCl4]2[InCl6]2[In2Cl10].  相似文献   

11.
Summary The crystal structure of dicesium-tetraazido-zincate, Cs2Zn(N3)4, has been refined from single crystal X-ray-diffractometer data. The previously reported orthorhombic structure, consisting of isolated Zn(N3)4-tetrahedra was confirmed and improved lattice parameters and atomic distances were determined. The azide groups are asymmetric and the coordination of central nitrogen atoms to cesium was observed. A table of structure data and mean atomic distances for fourteen zinc-azide compounds is added and the structures are discussed.
Herrn Prof. Dr. Karl Torkar zum 70. Geburtstag gewidmet  相似文献   

12.
Solid state reactions, by using a flux, lead to the new compounds Sr3Ga2O5Cl2 (A) and Sr3Fe1.18Al0.82O5Cl2 (B). By means of single crystal X-Ray determinations a monoclinic symmetry (space group C 2 2 -P21, (A):a=9.569 (2) Å; (B):a=9.550 (2) Å,Z=4) was found. Both compounds are not isotypic to Sr3Fe2O5Cl2 but crystallize like Ba3Fe2O5Cl2.
  相似文献   

13.
Preparation, Characterization, and Crystal Structures of Tetraiodoferrates(III) The extremely air and moisture sensitive tetraiodoferrates MFeI4 with M = K, Rb and Cs have been synthesized by reaction of Fe, MI and I2 at 300°C in closed quartz ampoules. The essentially more stable alkylammonium tetraiodoferrates NR4FeI4 with R = H, C2H5, n-C3H7, n-C4H9 and n-C5H11 can be obtained by reaction of Fe, NR4I and I2 in nitromethane. The Raman and UV/Vis-spectra of the black compounds show the existence of tetrahedral [FeI4]? ions in the structures. The crystal structure of the monoclinic CsFeI4 (CsTlI4 type, spgr P21/c; a = 7.281(1) Å; b = 17.960(3) Å; c = 8.248(2) Å; β = 107.35(15)°) is built up by tetrahedral [FeI4]? ions and CsI11 polyhedra. The crystal structure of the orthorhombic (n-C5H11)4NFeI4 (spgr Pnna; a = 20.143(4) Å; b = 12.683(3) Å; c = 12.577(3) Å) contains tetrahedral [(n-C5H11)4N]+ ions and [FeI4]? ions, respectively.  相似文献   

14.
Preparation and Structure of the Compounds Ba2Pb4F10Br2–xIx (x = 0–2) with Related Structure Motifs of the Fluorites and Matlockites Colourless single crystals of Ba2Pb4F10Br2–xIx (x = 0–2) have been obtained under hydrothermal conditions (T = 250 °C, 10 d), starting from stoichiometric amounts of BaF2, PbF2, PbBr2 and PbI2. The compounds crystallize in the tetragonal space group P4/nmm (No. 129). A complete miscibility in the region x = 0–2 has been observed. The mixed crystals follow Vegard's rule. For the compounds with the composition Ba2Pb4F10Br2 (a = 5.9501(2) Å, c = 9.6768(10) Å, R[F2 > 2σ(F2)] = 0.022, wR(F2 all reflections) = 0.059), Ba2Pb4F10Br1.1I0,9 (a = 5.9899(3) Å, c = 9.7848(5) Å, R[F2 > 2σ(F2)] = 0.014, wR(F2 all reflections) = 0.035) and Ba2Pb4F10I2 (a = 6.6417(3) Å, c = 9.9216(10) Å, R[F2 > 2σ(F2)] = 0.023, wR(F2 all reflections) = 0.049) complete structure analyses have been performed on the basis of single crystal diffractometer data. Microcrystalline single phase compounds Ba2Pb4F10Br2–xIx (x = 0–2) have been obtained by coprecipitation from aqueous solutions of KF, KBr (KI) and Ba(CH3COO)2, Pb(NO3)2 in acetic acid medium. For Ba2Pb4F10Br1.5I0.5 and Ba2Pb4F10Br0.5I1.5 powder data of microcrystalline samples were used for the Rietveld analyses (RBragg = 0.077 for Ba2Pb4F10Br1,5I0,5 and RBragg = 0.065 for Ba2Pb4F10Br0.5I1.5). The crystal structure comprises alternating structural features of fluorite related type (CaF2) around Ba and matlockite related type (PbFCl) around Pb1 and Pb2 along the c axis. Barium shows a {8 + 4} cuboctahedral coordination of fluorine. The coordination polyhedron around the two crystallographically independent lead atoms is a monocapped quadratic antiprism built of {4 + 1} fluorine and {4} bromine or iodine atoms, respectively.  相似文献   

15.
Solvothermal Synthesis and Crystal Structure Determination of AgBiI4 and Ag3BiI6 AgBiI4 and Ag3BiI6 were synthesized by solvothermal reaction from AgI and BiI3 in diluted HI‐solution (20 %) at a temperature of 160 °C. The greyish‐black crystals grow as octahedra (AgBiI4) or hexagonal/trigonal platelets (Ag3BiI6). AgBiI4 crystallizes in space group Fd3¯m with a = 1222.3(1) pm (300 K) and Z = 8 whereas Ag3BiI6 shows the space group R3¯m with a = 435.37(6) pm, c = 2081.0(4) pm (300 K) and Z = 1. Both crystal structures show stacking sequence abcabc… of hexagonal layers containing Iodine. Bismuth and silver are sharing octahedral sites with different mass ratio in both structures. The part of silver which could be localized varies with temperature. This behaviour indicates mobility of silver within the crystal structure. The ionic conductivity of AgBiI4 is explored. AgBiI4 and Ag3BiI6 show close structural relationship, with AgBiI4 as a variant with a higher degree of order.  相似文献   

16.
Synthesis, Properties and Crystal Structures of Magnesium Diazadiene Complexes Reactions of phenyl-substituted 1,4-diaza-1,3-butadienes (DAD) RN?CPh? CPh?NR (R = C6H5) 1a , C6H4-4-CH3 1b , C6H4-4-OCH3 ( 1c ) with magnesium in dimethoxyethan lead to complexes of the type [Mg(DAD)2(DME)] 2a–c , with DAD ligands in form of radical anions. Furthermore, highly reactiv complexes of the composition [Mg(DAD)(DME)2] 3a–c could be obtained. The crystal structures of 2a, 3a and 3c were determined.  相似文献   

17.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [SnI(NPPh3)]2 and [SnI3(NPPh3)]2 The phosphoraneiminato complex of the divalent tin, [SnI(NPPh3)]2 ( 1 ), originates from the reaction of metallic tin with N-iodine triphenylphosphaneimine, INPPh3, in dichloromethane suspension. 1 forms yellow, moisture sensitive crystals, which can be converted into the red phosphoraneiminato complex of the tetravalent tin, [SnI3(NPPh3)]2 ( 2 ), by oxidation with iodine. According to the crystal structure analyses 1 and 2 have centrosymmetric dimeric molecular structures in which the tin atoms are linked via the N atoms of the NPPh3 groups. The tin atoms in 1 have a ψ-tetrahedral coordination, those in 2 a trigonal-bipyramidal one. 1 : Space group P 1, Z = 1, lattice dimensions at –80 °C: a = 779.0(1), b = 1080.1(1), c = 1170.4(1) pm, α = 64.49(1)°, β = 88.42(1)°, γ = 79.13(1)°, R = 0.0293. 2 : Space group P21/n, Z = 2, lattice dimensions at –80 °C: a = 1252.4(1), b = 1421.3(3), c = 1260.1(1) pm, β = 108.50(1)°, R = 0.0518.  相似文献   

18.
Synthesis and Crystal Structure of K2Mn3S4 Single crystals of K2Mn3S4 have been prepared by a fusion reaction of potassium carbonate with manganese in a stream of hydrogen sulfide at 900 °C. K2Mn3S4 crystallizes in a new monoclinic layered structure type (P2/c, a = 7.244(2) Å, b = 5.822(1) Å, c = 11.018(5) Å, β = 112.33(3)°, Z = 2) which can be described as a stacking variant of the orthorhombic Cs2Mn3S4 structure type. Measurements of the magnetic susceptibilities show antiferro‐magnetic interactions.  相似文献   

19.
Crystal Structures of the Phosphaneimine Complexes [NaI(HNPPh3)3] and [SrI2(HNPPh3)2(THF)2], as well as of Sodium Triphenylphosphoraneiminate [NaNPPh3]6 [NaI(HNPPh3)3] ( 1 ) has been obtained as yellow, moisture sensitive crystals as an intermediate product of the synthesis of sodium triphenylphosphoraneiminate, [NaNPPh3]6 ( 2 ) from Ph3PI2 and sodium amide in liquid ammonia. Correspondingly, colourless crystals of [SrI2(HNPPh3)2(THF)2] ( 3 ) are formed from strontium amide and Ph3PI2 in liquid ammonia and subsequent recrystallisation of the primary product [SrI2(HNPPh3)4] from thf solution. The complexes 1 – 3 are mainly characterized by crystal structure determinations. 1 · 0,5 thf: space group P3c1, Z = 4, lattice dimensions at 193 K: a = b = 1533.2(1); c = 2545.6(1) pm, R = 0.0417. 1 has a molecular structure in which the sodium atom is tetrahedrally coordinated by the iodine atom with a distance of 315.9 pm and by the nitrogen atoms of the three HNPPh3 molecules with a distance of 238.9 pm. 2 · C7H8: space group P1, Z = 1, lattice dimensions at 213 K: a = 1457.1(1), b = 1484.9(1), c = 1502.7(1) pm; α = 116.32(1)°, β = 115.358(10)°, γ = 93.585(14)°; R = 0.0520. 2 has a molecular structure in which the six sodium atoms and the six nitrogen atoms of the (NPPh3) groups form a hexagonal prism with approximate D3d symmetry. 3 · 2 thf: space group P1, Z = 2, lattice dimensions at 193 K: a = 1042.9(1), b = 1337.4(1), c = 2095.1(1) pm; α = 90.130(8)°, β = 96.310(8)°, γ = 111.985(8)°; R = 0.0310. 3 has a molecular structure in which the strontium atom is octahedrally coordinated by the iodine atoms, by the nitrogen atoms of the HNPPh3 molecules and by the oxygen atoms of the thf molecules, all ligands being in trans‐position to one another.  相似文献   

20.
Starting from the Zintl-Concept: Syntheses and Crystal Structures of K2Ba3Sb4 and KBa4Sb3O The black, metallic lustrous, air sensitive compounds K2Ba3Sb4 and KBa4Sb3O were prepared from melts of mixtures of the elements, in case of KBa4Sb3O with a stoichiometric amount of Sb2O3. K2Ba3Sb4 crystallizes in the orthorhombic system, space group Pnma (a = 870.5(1) pm, b = 1770.2(2) pm, c = 923.6(1) pm, Z = 4) and is the first Sb compound with only [Sb2]4– dumbbells in the anionic partial structure. The compound KBa4Sb3O crystallizes in the tetragonal system, space group I4/mcm (a = 882.4(1) pm, c = 1659.4(2) pm, Z = 4). In this structure antimony forms [Sb2]4–-dumbbells and isolated ions Sb3–. Each antimony ion of the dumbbells – in K2Ba3Sb4 as well as in KBa4Sb3O – is coordinated in form of a bicapped skew trigonal prism. The isolated Sb3– ions in KBa4Sb3O center bicapped tetragonal antiprisms, the O2– ions occupy tetrahedral voids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号