首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A random—nonrandom—mixture equation for the Helmholtz energy of a fluid mixture is shown to correlate the solubility of inert and acidic gases in water and methanol quite accurately at pressures up to 300 bar. Further, the calculated Henry's law constants of the gases in water show good agreement with experimental data.The gas solubility models is a modification of our previous model. It contains three binary interaction parameters, one in the reduced density term and two in the attractive terms. When the nonrandom parameter vanishes the model reduces to the classical mixing rule. The model correlates vapour—liquid equilibria in binary and ternary hydrocarbon—methanol systems quite accurately.The results of the correlation are compared with results obtained using the classical van der Waals quadratic mixing rule. The random—nonrandom model is, in all cases, superior to the van der Waals model. Finally, a comparison of computer time consumption for the two models is given.  相似文献   

2.
《Fluid Phase Equilibria》2005,227(2):183-196
The phase behavior of water/hydrocarbon mixtures in a wide range of pressures is important for various applications ranging from reservoir engineering to environmental engineering. In this work, mutual solubility and critical loci of hydrocarbon/water systems are calculated using the Peng–Robinson–Stryjek–Vera cubic equation of state with four mixing rules: (1) van der Waals mixing rules with one binary interaction parameter (vdW-1), (2) van der Waals mixing rules with asymmetric composition dependent binary interaction parameter (vdW-A), (3) Wong–Sandler mixing rules (WS) and (4) second-order modified Huron–Vidal mixing rules (MHV2). It was found that the parameters obtained from correlating liquid–liquid equilibria using different mixing rules would lead to prediction of completely different forms of critical behavior. Unusual branches of critical loci were found with WS and MHV2 mixing rules. Therefore, equation of states models must be used with extreme caution when applied for predicting phase behavior over wide ranges of temperatures and pressures.  相似文献   

3.
A local-composition, two-fluid model has been developed for equation-of-state calculations of fluid-phase equilibria for asymmetric mixtures; it is applicable to any equation of state of the van der Waals form. A modification of the quasichemical theory of Guggenheim is applied to mixtures at all fluid densities. Desirable boundary conditions are met at low densities, at high densities, and at high temperatures.In effect, the local-composition model uses density-dependent mixing rules. It contains no new adjustable binary parameters and can be extended to multicomponent mixtures without ternary (or higher) parameters. It appears that, when compared to conventional one-fluid models, significant improvement may be obtained in predictions for vapor-liquid equilibria of typical asymmetric mixtures.  相似文献   

4.
《Fluid Phase Equilibria》2006,242(1):93-102
A thermodynamic consistency test applicable to high pressure binary gas–solid mixtures is extended to ternary mixtures containing a compressed gas and two solid solutes. A high pressure mixture containing carbon dioxide as solvent and two chemically similar solutes (2,3 dimethylnaphthalene and 2,6 dimethylnaphthalene) and a high pressure mixture containing carbon dioxide as solvent and two chemically different solutes (capsaicin and β-carotene), are considered in the study. Several sets of isothermal solubility data for binary and ternary mixtures are considered in the study. The Peng–Robinson equation of state with the mixing rules of Wong and Sandler have been employed for modeling the solubility of the solid in the case of binary mixtures, while the classical van der Waals mixing rules were used for modeling the ternary mixtures containing two solid solutes. Then the proposed thermodynamic consistency test has been applied. The results show that the thermodynamic test for ternary mixtures can be applied with confidence determining consistency or inconsistency of the experimental data used.  相似文献   

5.
《Fluid Phase Equilibria》2004,224(1):97-109
Azeotropic mixtures of fluorocarbon (FC) and hydro fluorocarbon (HFC) with hydrocarbons are gaining popularity as drop-in substitutes for CFCs and HCFCs. A method to compute all the azeotropes in a refrigerant mixture through the equation of state approach is described. The method allows prediction of all the azeotropes in a refrigerant mixture and is in close agreement with the experimental data. Both the vapor and the liquid phase non-idealities are incorporated through fugacity coefficients modeled using Peng–Robinson–Stryjek–Vera equation of state with Wong-Sandler and van der Waals mixing rules. Homotopy continuation based methodology guarantees computation of all the solutions of necessary and sufficient condition of azeotropy in multicomponent refrigerant mixtures. The method establishes the pressure dependency of azeotropic composition allowing prediction of bifurcation pressure where refrigerant azeotropes may appear or disappear and predicts azeotropes at elevated pressures. The approach is independent of equation of state and mixing rules but rely on their ability to represent the phase behavior. The approach is tested with R23–R13, propane–R227ea binary mixtures and a ternary mixture of R32–R125–R143a.  相似文献   

6.
《Fluid Phase Equilibria》2001,178(1-2):87-95
Mixing rules are necessary when equations of state for pure fluids are used to calculate various thermodynamic properties of fluid mixtures. The well-known van der Waals one-fluid (vdW1) mixing rules are proved to be good ones and widely used in different equations of state. But vdW1 mixing rules are valid only when molecular size differences of components in a mixture are not very large. The vdW1 type density-dependent mixing rule proposed by Chen et al. [1] is superior for the prediction of pressure and vapor–liquid equilibria when components in the mixture have very different sizes. The extension of the mixing rule to chain-like molecules and heterosegment molecules was also made with good results. In this paper, the comparison of different mixing rules are carried out further for the prediction of the density and the residual internal energy for binary and ternary Lennard–Jones (LJ) mixtures with different molecular sizes and different molecular interaction energy parameters. The results show that the significant improvement for the prediction of densities is achieved with the new mixing rule [1], and that the modification of the mixing rule for the interaction energy parameter is also necessary for better prediction of the residual internal energy.  相似文献   

7.
The recently developed Cubic-Plus-Association Equation of State (CPA EoS) is extended in this study to binary systems containing one associating compound (alcohol) and an inert one (hydrocarbon). CPA combines the Soave-Redlich-Kwong (SRK) equation of state for the physical part with an association term based on perturbation theory. The classical van der Waals one-fluid mixing rules are used for the attractive and co-volume parameters, and b, while the extension of the association term to mixtures is rigorous and does not require any mixing rules. Excellent correlation of Vapor-Liquid Equilibria (VLE) is obtained using a small value for the interaction parameter (kij) in the attractive term of the physical part of the equation of state even when it is temperature-independent. CPA yileds much better results than SRK and its performance is similar to that of other association models, like the Anderko EoS, and the more complex SAFT and Simplified SAFT EoS.  相似文献   

8.
A five-parameter equation of state is proposed to calculate the vapor-liquid equilibria of compounds in binary and multicomponent mixtures. This equation is closely related to a previous equation of state proposed by the author, the main modification being in the entropic term where the parameter m assumes a constant value for all compounds. It is shown that the van der Waals conditions at the critical point and the Morbidelli-Carra' algorithm enable the calculation of three other constants. Rules are given to calculate the remaining constant K which pertains to the enthalpic term. The proposed method only requires knowledge of the critical constants and of the normal boiling temperature as input parameters. A wide application of the new equation to both polar and non-polar binary systems indicates the following: the proposed method is predictive for ideal or nearly ideal mixtures; the correlation of mixtures of hydrocarbons having very different molar volumes can be obtained by optimizing only the binary interaction parameter linked to the enthalpic term; the new equation also correlates well with strongly non-ideal systems which exhibit a miscibility gap; the prediction of multicomponent vapor-liquid equilibria from the binary data alone is also reliable for both polar and non-polar mixtures.  相似文献   

9.
Liquids or compressed gases consisting of light molecules show deviations from classical mechanics, which are caused by the discontinuity of energy levels. From the assumption that each molecule is confined to a cell with a size depending on the free volume, a quantum correction is derived which extends any van der Waals type equation of state to quantum gases. The correction is applied to a semiempirical equation of state developed by the author. The extended equation yields reasonable critical compressibility factors and gives a better representation of PVT data than the uncorrected equation. Furthermore high pressure phase equilibria in mixtures containing helium and hydrogen have been calculated. Again the agreement with experimental data is improved; the adjustable binary interaction parameters have values close to the Berthelot-Lorentz rules and are less temperature dependent.  相似文献   

10.
Theoretically-based van der Waals one-fluid (vdW1) mixing rules are derived for Lennard–Jones (LJ) chain mixtures. The rules provide equivalent one-fluid segment parameters for LJ size (σ) and energy () parameter as well as chain length (m) based on the parameters of the individual mixture components and the component mole fractions. The mixing rules are tested by performing Monte Carlo simulations of eight different binary mixtures and the equivalent vdW1 pure fluid, each at three densities. The simulations test the effects of changing LJ size parameter, LJ energy parameter and chain length individually and together. The effects of mole fraction and density are also examined. The mixing rules are tested for accuracy in predicting compressibility factors and radial distribution functions. It is found that the vdW1 rules provide excellent agreement when size and energy parameter are varied. Good agreement is found for mixtures with different chain lengths. The discrepancy is worst at very high densities when all component parameters are varied simultaneously.  相似文献   

11.
Gow, A.S., 1993. A modified Clausius equation of state for calculation of multicomponent refrigerant vapor-liquid equilibria. Fluid Phase Equilibria, 90: 219-249.

A modified Clausius equation of state with a single temperature dependent energy-volume parameter a(T) in the attractive term was designed to describe the vapor pressure vs. temperature relationship of 39 pure refrigerant fluids including elementary cryogenic materials (e.g. He, Ar, N2, CO2, CH4, etc.), chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), fluorocarbons (FCs), and various other simple cryogenic compounds. The equation developed represents the vapor-liquid coexistence dome, and the superheated vapor compressibility factor and enthalpy for pure refrigerants.

The vapor-liquid equilibrium for refrigerant mixtures is calculated using a “phi-phi” method with “one fluid” van der Waals mixing and combining rules for the equation of state parameters aM(T), bM and cM. A single interaction constant k12 is used to describe non-ideal behavior of each binary. The binary interaction constant, which is a strong function of temperature, and the sign of which signifies the type of deviations from Raoult's law, is obtained by correlating experimental bubble point data for isothermal binary refrigerant mixtures. The proposed equation of state generally describes binary P-x,y data more accurately the higher the temperature for a given system. The method presented is extended to predict vapor-liquid equilibria for the R14-R23-R13 ternary system at 198.75 K using binary interaction constants at this temperature for the three binaries involved.  相似文献   


12.
《Fluid Phase Equilibria》2005,227(1):97-112
New mixing rules (VWLC-I and II) capable of connecting van der Waals (VDW) to CEOS/AE mixing rule models were developed. These models are able to incorporate the same multi-component mixture parameters obtained for the van der Waals and CEOS/AE models simultaneously. The VWLC mixing rules directly incorporate local compositions into the cubic equations of state (CEOS). The energy parameters required for the local compositions are calculated from the CEOS parameters. The Peng–Robinson (PR) CEOS was used for this study. Binary interactions parameters were obtained by adjusting the vapor pressure of the binary mixture for several low and high-pressure systems. The predictive capabilities of the VWLC mixing rules were tested by vapor–liquid equilibria calculations for low and high-pressure multicomponent systems. The results were compared with the predictions of the VDW mixing rule and a Huron–Vidal (HV) kind of CEOS/AE-NRTL mixing rule. The VWLC mixing rules are consistent models giving good results in a broad range of pressures and temperatures in binary and multicomponent mixtures. They compare favorably with the CEOS/AE-NRTL mixing rule for low-pressure systems. In high-pressure ternary systems VWLC-I and II give good predictions, much better, in fact, than the CEOS/AE-NRTL mixing rule.  相似文献   

13.
An augmented van der Waals equation of state based on a perturbation theory has been applied to the calculation of high pressure vapour—liquid equilibria for systems containing polar substances. The equation of state comprises four terms, which imply the contributions from repulsion, symmetric, non-polar asymmetric, and polar asymmetric interactions. The characteristic parameters of each pure substance have been determined by three methods with the use of vapour pressures and saturated liquid densities. Mixing models for the terms of the repulsion, symmetric, and non-polar asymmetric interactions are the same as used previously. Two types of mixing models based on a three-fluid model and/or a one-fluid model are developed for the polar asymmetric term. The polar asymmetric term has a large effect on the prediction of the vapour—liquid equilibrium. With the introduction of a binary interaction parameter, the equation is found to be useful in correlating the vapour—liquid equilibria for a system containing a polar substance except near a critical region.  相似文献   

14.
Recent computer-simulation work by Shing and Gubbins (1983) for binary mixtures has shown that common semiempirical models (van der Waals n-fluid models) are in error when the molecules of the two components differ appreciably in size; the error is most severe in the dilute region. While perturbation theories are much better, they (like computer simulations) are not as yet useful for engineering work because of prohibitive computer requirements.This work proposes an algebraic expression for the Helmholtz energy of a mixture which gives results in very good agreement with those reported by Shing and Gubbins. This expression, using the local-composition concept, is based on a simplified but realistic picture of a fluid mixture: short-range order and long-range disorder. The proposed expression uses the Mansoori-Carnahan-Starling-Leland equation for the contribution of repulsive forces. For the contribution of attractive forces, it uses a new expression based on not one but several radii for the first-neighbor shell, one radius for each component.With reasonable simplifications, the resulting equation for the Helmholtz energy indicates that the van der Waals “constant” a is a strict quadratic function of mole fraction only at very low densities; at advanced densities, there are small deviations from the quadratic mixing rule. For practical calculations, the computer requirements are nearly the same as those for conventional engineering models.  相似文献   

15.
In this work a Helmholtz energy model is applied to the prediction of thermodynamic properties of air, the related binary mixtures and the intervening pure components. The Helmholtz energy of the mixture is represented as two contributions: one from a proven accurate extended corresponding states model and the other is a correction term. The corresponding states model relies on pure-component shape factors relative to nitrogen and extension to mixtures with the van der Waals one-fluid mixture model with ordinary combining rules. The correction term is temperature-, density- and composition-dependent with the use of a theoretically consistent local composition model with a coordination number model derived from lattice gas theory. For air the obtained average absolute deviations in densities were 0.090 per cent, 0.15 per cent in speeds of sound, 0.28 per cent in bubble-point pressures and 0.30 per cent for dew-point pressures. For the three associated binary mixtures, the absolute average deviations in densities were within 0.14 per cent and 0.63 per cent for bubble-point pressures. For oxygen and argon, the absolute average deviations were within 0.07 per cent in densities, 0.45 per cent in VLE properties and 0.012 per cent in speeds of sound.  相似文献   

16.
In this study, a modification is presented for van Laar model (van der Waals mixture theory) for association mixtures. The molecular association effects are considered in van der Waals mixture theory by adding two new steps to van Laar cycle. The excess Gibbs free energy function and corresponding activity coefficient equations are derived for presented model. In addition to general case when both components are associating fluids, model simplified for two interesting cases: (i) only one fluid is associating, (ii) two fluids are associating but only self-associated species exist in the mixture. This model also is used for VLE calculations for 16 different binary mixtures in which one or both components are associating fluids. Results of the presented model show satisfactory improvement over the nonassociating case for vapor liquid equilibrium (VLE) prediction.  相似文献   

17.
A new three-parameter cubic equation of state is presented by combination of a modified attractive term and van der Waals repulsive expression. Also a new alpha function for the attractive parameter of the new EOS is proposed. The new coefficients of alpha function and the other parameters of the attractive term are adjusted using the data of the saturated vapor pressure and liquid density of almost 60 pure compounds including heavy hydrocarbons. The new EOS is adopted for prediction of the various thermophysical properties of pure compounds such as saturated and supercritical volume, enthalpy of vaporization, compressibility factor, heat capacity and sound velocity. Following successful application of the new EOS for the pure components, using vdW one-fluid mixing rules, the new EOSs are applied to prediction of the bubble pressure and vapor mole fraction of the several binary and ternary mixtures. The accuracy of the new EOS for phase equilibrium calculation is demonstrated by comparison of the results of the present EOSs with the PT, PR, GPR and SRK cubic EOSs.  相似文献   

18.
Using a similar approach as Lencka and Anderko [AIChE J. 39 (1993) 533], we developed an equation of state for hydrogen fluoride (HF), which can correlate the vapor pressure, the saturated liquid and vapor densities of it from the triple point to critical point with good accuracy. We used an equilibrium model to account for hydrogen bonding that assumes the formation of dimer, hexamer, and octamer species as suggested by Schotte [Ind. Eng. Chem. Process Des. Dev. 19 (1980) 432]. The physical and chemical parameters are obtained directly from the regression of pure component properties by applying the critical constraints to the equation of state for hydrogen fluoride. This equation of state together with the Wong–Sandler mixing rule as well as the van der Waals one-fluid mixing rule are used to correlate the phase equilibria of binary hydrogen fluoride mixtures with HCl, HCFC-124, HFC-134a, HFC-152a, HCFC-22, and HFC-32. For these systems, new equation of state with the Wong–Sandler mixing rule gives good results.  相似文献   

19.
《Fluid Phase Equilibria》1998,145(2):193-215
A volume-translated Peng-Robinson (VTPR) equation of state (EOS) is developed in this study. Besides the two parameters in the original Peng-Robinson equation of state, a volume correction term is employed in the VTPR EOS. In this equation, the temperature dependence of the EOS energy parameter was regressed by an improved expression which yields better correlation of pure-fluid vapor pressures. The volume correction parameter is also correlated as a function of the reduced temperature. The VTPR EOS includes two optimally fitted parameters for each pure fluid. These parameters are reported for over 100 nonpolar and polar components. The VTPR EOS shows satisfactory results in calculating the vapor pressures and both the saturated vapor and liquid molar volumes. In comparison with other commonly used cubic EOS, the VTPR EOS presents better results, especially for the saturated liquid molar volumes of polar systems. VLE calculations on fluid mixtures were also studied in this work. Traditional van der Waals one-fluid mixing rules and other mixing models using excess free energy equations were employed in the new EOS. The VTPR EOS is comparable to other EOS in VLE calculations with various mixing rules, but yields better predictions on the molar volumes of liquid mixtures.  相似文献   

20.
An efficient implementation of the generalized van der Waals theory of fluids is presented for the calculation of surface tension in simple fluid mixtures. While detailed correlation analysis is avoided the dominant binding energy contribution and the negative contribution due to the nonlocal entropy are accounted for in the free energy density functional by simple physical approximations of the type originally introduced by van der Waals. Efficient computation is achieved by the use of a single-parameter optimization of a tanh-shaped profile representing the total density as well as the composition variation across the interface. This simple profile nevertheless incorporates the expected adsorption to the interface of the volatile component. Application is made to argon/krypton mixtures represented by Lennard-Jones potentials and Lorentz-Berthelot combining rules. Surface tension predictions compare well with both experimental observations and computer simulation results which also indicated close agreement in particle density profiles, especially if the Berthelot rule is amended with a binary interaction parameter slightly (3%) less than unity. Copyright 2001 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号