首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Careful choice of the organic ligands is one of the most important parameters in the rational design and synthesis of coordination polymers. Aromatic polycarboxylates have been widely used in the preparation of metal–organic polymers since they can utilize various coordination modes to form diverse structures and can act as hydrogen‐bond acceptors and donors in the assembly of supramolecular structures. Nitrogen‐heterocyclic organic compounds have also been used extensively as ligands for the construction of polymers with interesting structures. In the polymers catena‐poly[[[diaquabis{2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole‐κN 3}cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O 1:O 4] dihydrate], {[Co(C8H4O4)(C12H11N4)2(H2O)2]·2H2O}n , (I), and catena‐poly[[[diaquabis{2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole‐κN 3}nickel(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O 1:O 4] dihydrate], {[Ni(C8H4O4)(C12H11N4)2(H2O)2]·2H2O}n , (II), the CoII or NiII ion lies on an inversion centre and exhibits a slightly distorted octahedral coordination geometry, coordinated by two N atoms from two imidazole rings and four O atoms from two monodentate carboxylate groups and two water molecules. The dicarboxylate ligands bridge metal ions forming a polymeric chain. The 2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole ligands coordinate to the CoII or NiII centres in monodentate modes through an imidazole N atom and are pendant on opposite sides of the main chain. The two structures are isomorphous. In the crystal, the one‐dimensional chains are further connected through O—H…O, O—H…N and N—H…O hydrogen bonds, leading to a three‐dimensional supramolecular architecture. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviours and fluorescence properties of both polymers have been investigated.  相似文献   

2.
(E)‐1,3‐Pentadiene (EP) and (E)‐2‐methyl‐1,3‐pentadiene (2MP) were polymerized to cis‐1,4 polymers with homogeneous and heterogeneous neodymium catalysts to examine the influence of the physical state of the catalyst on the polymerization stereoselectivity. Data on the polymerization of (E)‐1,3‐hexadiene (EH) are also reported. EP and EH gave cis‐1,4 isotactic polymers both with the homogeneous and with the heterogeneous system, whereas 2MP gave an isotactic cis‐1,4 polymer with the heterogeneous catalyst and a syndiotactic cis‐1,4 polymer, never reported earlier, with the homogeneous one. For comparison, the results obtained with the soluble CpTiCl3‐based catalyst (Cp = cyclopentadienyl), which gives cis‐1,4 isotactic poly(2MP), are examined. A tentative interpretation is given for the mechanism of the formation of the stereoregular polymers obtained and a complete NMR characterization of the cis‐1,4‐syndiotactic poly(2MP) is reported. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3227–3232  相似文献   

3.
The title compound, C6H9N2O2+·Cl·C6H8N2O2·H2O, contains one 2‐(3‐methyl‐1H‐imidazol‐3‐ium‐1‐yl)acetate inner salt molecule, one 1‐carboxymethyl‐3‐methyl‐1H‐imidazol‐3‐ium cation, one chloride ion and one water molecule. In the extended structure, chloride anions and water molecules are linked via O—H...Cl hydrogen bonds, forming an infinite one‐dimensional chain. The chloride anions are also linked by two weak C—H...Cl interactions to neighbouring methylene groups and imidazole rings. Two imidazolium moieties form a homoconjugated cation through a strong and asymmetric O—H...O hydrogen bond of 2.472 (2) Å. The IR spectrum shows a continuous D‐type absorption in the region below 1300 cm−1 and is different to that of 1‐carboxymethyl‐3‐methylimidazolium chloride [Xuan, Wang & Xue (2012). Spectrochim. Acta Part A, 96 , 436–443].  相似文献   

4.
The present paper describes the synthesis of 2,6‐di‐O‐thexyldimethylsilyl cellulose as a novel 2,6‐di‐O‐protected cellulose derivative. This material was obtained by reacting cellulose in N,N‐dimethylacetamide/LiCl solution with thexyldimethylchlorosilane and imidazole for 24 h at 100°C. In a typical subsequent reaction the residual OH‐group in position 3 could be completely etherified without loss of any protecting groups. Treatment with tetrabutylammonium fluoride leads to the novel compounds 3‐O‐allyl and 3‐O‐methyl cellulose. The structures of all polymers are revealed by means of one‐ (1H and 13C) and two‐dimensional (COSY and HMQC) NMR techniques.  相似文献   

5.
In recent years, coordination polymers constructed from multidentate carboxylate and pyridyl ligands have attracted much attention because these ligands can adopt a rich variety of coordination modes and thus lead to the formation of crystalline products with intriguing structures and interesting properties. A new coordination polymer, namely poly[[μ2‐1,6‐bis(pyridin‐3‐yl)‐1,3,5‐hexatriene‐κ2N:N′](μ3‐naphthalene‐1,4‐dicarboxylato‐κ4O1,O1′:O4:O4′)zinc(II)], [Zn(C12H6O4)(C16H14N2)]n, has been prepared by the self‐assembly of Zn(NO3)2·6H2O, naphthalene‐1,4‐dicarboxylic acid (1,4‐H2ndc) and 1,6‐bis(pyridin‐3‐yl)‐1,3,5‐hexatriene (3,3′‐bphte) under hydrothermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X‐ray diffraction and single‐crystal X‐ray diffraction analysis. Each ZnII ion is six‐coordinated by four O atoms from three 1,4‐ndc2− ligands and by two N atoms from two 3,3′‐bphte ligands, forming a distorted octahedral ZnO4N2 coordination geometry. Pairs of ZnII ions are linked by 1,4‐ndc2− ligands, leading to the formation of a two‐dimensional square lattice ( sql ) layer extending in the ab plane. In the crystal, adjacent layers are further connected by 3,3′‐bphte bridges, generating a three‐dimensional architecture. From a topological viewpoint, if each dinuclear zinc unit is considered as a 6‐connected node and the 1,4‐ndc2− and 3,3′‐bphte ligands are regarded as linkers, the structure can be simplified as a unique three‐dimensional 6‐connected framework with the point symbol 446108. The thermal stability and solid‐state photoluminescence properties have also been investigated.  相似文献   

6.
Two differently hydrated crystal forms of the title compound, viz. bis­(acetato‐κ2O,O′)(2,9‐di­methyl‐1,10‐phenanthroline‐κ2N,N′)­mercury(II), [Hg(C2H3O2)2(C14H12N2)] or [HgAc2(dmph)] [dmph is 2,3‐di­methyl‐1,10‐phenantroline (neocuproine) and Ac is acetate], (I), and tris­[bis­(acetato‐κ2O,O′)(2,9‐di­methyl‐1,10‐phenanthroline‐κ2N,N′)­mercury(II)] hexadecahydrate, [Hg(C2H3O2)2(C14H12N2)]3·16H2O or [HgAc2(dmph)]3·16H2O, (II), are presented. Both structures are composed of very simple monomeric units, which act as the building blocks of complex packing schemes stabilized by a diversity of π–π and hydrogen‐bonding interactions.  相似文献   

7.
Two different zinc sulfite compounds have been prepared through the decomposition of pyrosulfite–­di­thionite ions in aqueous solution, viz. a dimeric complex, di‐μ‐sulfito‐κ3O,O′:O′′;κ3O:O′,O′′‐bis­[(4,4′‐di­methyl‐2,2′‐bi­pyridine‐κ2N,N′)­zinc(II)] dihydrate, [Zn2(SO3)2(C12H12N2)2]·2H2O, (I), which was solved and refined from a twinned sample, and an extended polymer, poly­[[aqua(1,10‐phenanthroline‐κ2N,N′)­zinc(II)]‐μ3‐sulfito‐κ2O:O′:O′′‐zinc(II)‐μ3‐sulfito‐κ3O:O:O′], [Zn2(SO3)2(C12H10N2)(H2O)]n, (II). In (I), the dinuclear ZnII complex has a center of symmetry. The cation is five‐coordinate in a square‐pyramidal arrangement, the anion fulfilling a bridging chelating role. Compound (II) comprises two different zinc units, one being five‐coordinate (square pyramidal) and the other four‐coordinate (trigonal pyramidal), and two independent sulfite groups with different binding modes to the cationic centers.  相似文献   

8.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

9.
The cadmium(II) coordination polymer poly[[(pyrazino[2,3‐f][1,10]phenanthroline‐κ2N8,N9)cadmium(II)]‐μ3‐naphthalene‐1,4‐dicarboxylato‐κ5O1:O1,O1′:O4,O4′], [Cd(C12H6O4)(C14H8N4)]n, contains two CdII cations, two pyrazino[2,3‐f][1,10]phenanthroline (L) ligands and two naphthalene‐1,4‐dicarboxylate (1,4‐ndc) anions in the asymmetric unit. Both CdII ions are in a distorted CdO5N2 monocapped octahedral coordination geometry. Both unique 1,4‐ndc ligands are bonded to three CdII ions. In these modes, tetranuclear clusters are formed in which four CdII ions are bridged by the carboxylate groups of the 1,4‐ndc ligands to form discrete rods. The tetranuclear cadmium carboxylate clusters act as rod‐shaped secondary building units (SBUs) within the structure. The SBUs are connected together by the aromatic backbone of the dicarboxylate ligands, connecting the clusters into a three‐dimensional α‐polonium net. The title compound represents the first α‐polonium net constructed from rod‐like clusters in coordination polymers. The result indicates that an appropriate combination of dicarboxylate and aromatic chelating ligands is critical to the formation of high‐dimensional structures based on metal clusters in these systems.  相似文献   

10.
The α,ω‐end‐capped poly(2‐methyl‐2‐oxazoline) (Cn‐POXZ‐Cn) have been synthesized by a one‐pot process using cationic ring‐opening polymerization with an appropriate initiator and terminating agent. The polymers bearing different alkyl groups C12 and C18 have molecular weight in the range of 2.4 × 103 to 14 × 103 with a small polydispersity index. The solution behavior of the free chains has been analyzed in a nonselective solvent, dichloromethane, by small‐angle neutron scattering and dynamic light scattering. These amphiphilic polymers associate in water to form flower‐like micellar structures. Critical micelle concentrations, investigated by fluorescence technique, are in the range of 0.03–0.5 g L?1 and are dependent on the hydrophilic/lipophilic balance. The structural properties of the aggregates have also been investigated by viscometry. Intrinsic viscosities of these polymers are in the same range as that of the precursors poly(2‐methyl‐2‐oxazoline) (POXZ) and mono‐functionalized polymers. Large viscosity increase corresponding to intermicellar bridging was observed in the vicinity of the micelle overlap concentration. Addition of hydroxypropyl β‐cyclodextrin (HβCD) has dissociated the aggregates and the intrinsic viscosities of the HβCD‐end‐capped chains have become comparable with the ones of POXZ precursor chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2477–2485, 2010  相似文献   

11.
Two new metal–organic frameworks (MOFs), namely, three‐dimensional poly[diaquabis{μ2‐1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene}bis(μ2‐glutarato)dinickel(II)] monohydrate], {[Ni2(C5H6O4)2(C16H18N4)2(H2O)2]·H2O}n or {[Ni2(Glu)2(1,4‐mbix)2(H2O)2]·H2O}n, ( I ), and two‐dimensional poly[[{μ2‐1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene}(μ2‐glutarato)zinc(II)] tetrahydrate], {[Zn(C5H6O4)(C16H18N4)]·4H2O}n or {[Zn(Glu)(1,4‐mbix)]·4H2O}n ( II ), have been synthesized hydrothermally using glutarate (Glu2?) mixed with 1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene (1,4‐mbix), and characterized by single‐crystal X‐ray diffraction, IR and UV–Vis spectroscopy, powder X‐ray diffraction, and thermogravimetric and photoluminescence analyses. NiII MOF ( I ) shows a 4‐connected 3D framework with point symbol 66, but is not a typical dia network. ZnII MOF ( II ) displays a two‐dimensional 44‐ sql network with one‐dimensional water chains penetrating the grids along the c direction. The solid‐state photoluminescence analysis of ( II ) was performed at room temperature and the MOF exhibits highly selective sensing toward Fe3+ and Cr2O72? ions in aqueous solution.  相似文献   

12.
The structure of 2,5‐bis­(methyl­thio)‐1,4‐benzo­quinone, C8H8O2S2, is composed of an essentially planar centrosymmetric benzo­quinone substituted with two methyl­thio groups. The important bond distances are S—Csp3 1.788 (2) and S—Csp2 1.724 (2) Å, and the two Csp2—Csp2 distances are 1.447 (3) and 1.504 (3) Å, which differ significantly. There are short S?S interactions of 3.430 (1) Å and Csp2—H?O‐type contacts forming a dimeric motif with graph set R22(8). The structure of 2‐methyl‐3‐(methyl­sulfonyl)­benzo­[b]­thio­phene, C10H10O2S2, is composed of an essentially planar benzo­thio­phene moiety substituted with methyl and methyl­sulfonyl groups. The mean values of the important bond distances are endocyclic S—Csp2 1.734 (3), S=O 1.434 (4) and C—Caromatic 1.389 (10) Å. The exocyclic S—Csp2 and S—Csp3 distances are 1.759 (4) and 1.763 (5) Å, respectively.  相似文献   

13.
The title compound, μ‐aqua‐1:2κ2O‐penta­aqua‐1κ2O,2κ3O‐μ‐3,6‐bis(6‐methyl‐2‐pyridyl)­pyridazine‐1κ2N1,N6:2κ2N2,N3‐chloro‐1κCl‐dinickel(II) trichloride trihydrate, [Ni2Cl(C16H14­N4)(H2O)6]Cl3·3H2O, consists of two NiII atoms, a 3,6‐bis(6‐methyl‐2‐pyridyl)­pyridazine mol­ecule, four Cl atoms and nine water mol­ecules. The two Ni atoms are octahedrally coordinated by N and Cl atoms, and by water mol­ecules, and the three six‐membered rings, a pyridazine and two picolines, are planar to within 0.181 (3) Å. The crystal structure is stabilized by an intra‐ and intermolecular hydrogen‐bonding scheme involving water–water and water–chlorine interactions.  相似文献   

14.
The bulk cyclopolymerization of diepisulfide, 1,2:5,6‐diepithio‐3,4‐di‐O‐methyl‐1,2:5,6‐tetradeoxy‐D ‐mannitol ( 1 ), was studied using R4N+Br? (R = ? CH3, C2H5, C3H7, C4H9, and C7H15) and (C4H9)4N+X? (X = Cl, I, NO3, and ClO4) as the initiators. All the bulk polymerizations of 1 using quaternary tetraalkylammonium salts at 90 °C proceeded without gelation even at high conversion to produce gel‐free polymers consisting of 2,5‐anhydro‐1,5‐dithio‐D ‐glucitol (I) as the major cyclic repeating unit along with 1,5‐anhydro‐2,5‐dithio‐D ‐mannitol (II) and the desulfurized acyclic unit (III) as the minor units. The polymerization rate and molar fraction of the I unit increased with the increasing alkyl chain length of the tetraalkylammonium cation and the increasing nucleophilicity of the counteranion. Tetrabutylammonium chloride exhibited the highest catalytic activity and the highest stereoselectivity, that is, the thiosugar polymer with I:II:III = 81:15:4 and a number‐average molecular weight of 31.9 × 103 was obtained in 85% yield for a polymerization time of 0.5 h. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 965–970, 2002  相似文献   

15.
In the title two‐dimensional coordination polymer, [Mn(1,4‐BDOA)(4,4‐bipy)(H2O)2]n [1,4‐BDOA2− is the p‐phenyl­ene­dioxy­di­acetate dianion (C10H8O6) and 4,4‐bipy is 4,4‐bi­pyridine (C10H8N2)], each MnII atom displays octahedral coordination by two O atoms of the 1,4‐BDOA2− groups, two N atoms of the 4,4‐bipy ligands and two solvent water mol­ecules. The MnII atom, 4,4‐bipy ligand and 1,4‐BDOA2− group occupy different inversion centres. Adjacent MnII atoms are bridged by 1,4‐BDOA2− groups and 4,4‐bipy ligands, forming a two‐dimensional network with Mn⋯Mn separations of 11.592 (2) and 11.699 (2) Å. Hydro­gen bonds from a water O—H group link the layers in the third dimension.  相似文献   

16.
The one‐ and two‐dimensional polymorphic cadmium polycarboxylate coordination polymers, catena‐poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], [Cd(C10H9N2O2)2]n, and poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], also [Cd(C10H9N2O2)2]n, were prepared under solvothermal conditions. In each structure, each CdII atom is coordinated by four O atoms and two N atoms from four different ligands. In the former structure, two crystallographically independent CdII atoms are located on twofold symmetry axes and doubly bridged in a μ2N:O,O′‐mode by the ligands into correspondingly independent chains that run in the [100] and [010] directions. Chains containing crystallographically related CdII atoms are linked into sheets viaπ–π stacking interactions. Sheets containing one of the distinct types of CdII atom are stacked perpendicular to [001] and alternate with sheets containing the other type of CdII atom. The second complex is a two‐dimensional homometallic CdII (4,4) net structure in which each CdII atom is singly bridged to four neighbouring CdII atoms by four ligands also acting in a μ2N:O,O′‐mode. A square‐grid network results and the three‐dimensional supramolecular framework is completed by π–π stacking interactions between the aromatic ring systems.  相似文献   

17.
The resolution of 1‐i‐butyl‐3‐methyl‐3‐phospholene 1‐oxide was studied applying TADDOL [(−)‐(4R,5R)‐4,5‐bis(diphenylhydroxymethyl)‐2,2‐dimethyldioxolane], spiro‐TADDOL [(−)‐(2R,3R)‐α,α,α′,α′‐tetraphenyl‐1,4‐dioxaspiro[4.5]decan‐2,3‐dimethanol], or the acidic and neutral Ca2+ salts of (−)‐O,O′‐dibenzoyl‐ and (−)‐O,O′‐di‐p‐toluoyl‐(2R,3R)‐tartaric acid as the resolving agent. The absolute configuration of the P‐asymmetric center was determined by circular dichroism spectroscopy and related quantum chemical calculations. In one instance, the single crystal of the diastereomeric complex incorporating i‐butyl‐3‐phospholene oxide and spiro‐TADDOL was subjected to X‐ray analysis, which suggested a feasible hypothesis for the efficiency of the resolution process under discussion that may be an example for the “solvent‐inhibited” resolution.  相似文献   

18.
In the construction of coordination polymers, many factors can influence the formation of the final architectures, such as the nature of the metal centres, the organic ligands and the counter‐anions. In the coordination polymer poly[aqua(μ‐benzene‐1,2‐dicarboxylato‐κ4O 1,O 1′:O 2,O 2′)[μ‐2‐(1H‐imidazol‐1‐ylmethyl)‐6‐methyl‐1H‐benzimidazole‐κ2N 2:N 3]cadmium(II)], [Cd(C12H12N4)(C8H4O4)(H2O)]n or [Cd(immb)(1,2‐bdic)(H2O)]n , each CdII ion is seven‐coordinated by two N atoms from two symmetry‐related 2‐(1H‐imidazol‐1‐ylmethyl)‐6‐methyl‐1H‐benzimidazole (immb) ligands, by four O atoms from two symmetry‐related benzene‐1,2‐dicarboxylate (1,2‐bdic2−) ligands and by one water molecule, leading to a CdN2O5 distorted pentagonal bipyramidal coordination environment. The immb and 1,2‐bdic2− ligands bridge CdII ions and form a two‐dimensional network structure. O—H…O and N—H…O hydrogen bonds stabilize the structure. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviour and fluorescence properties of the title polymer have been investigated.  相似文献   

19.
In the solid state, the title compound, di‐μ‐hydroxo‐1:2κ2O;‐3:4κ2O‐dihydroxo‐1κO,4κO‐octakis(2‐methyl‐2‐phenyl­propyl)‐1κ2C,2κ2C,3κ2C,4κ2C‐di‐μ3‐oxo‐1:2:3κ3O;2:3:4κ3O‐tetratin(IV), [Sn4O2(OH)4(C10H13)8], forms centrosymmetric dimeric [(Neophyl2SnOH)(Neophyl2SnOH)O]2 mol­ecules (Neophyl = 2‐methyl‐2‐phenylpropyl), with an almost planar Sn–O framework that adopts a ladder‐type structure consisting of three four‐membered rings. The hydroxyl groups are shielded by the organic groups, which prevent them from further condensation and from the formation of hydrogen bonds.  相似文献   

20.
Reactions of hydrogen sulfates of quino‐ and diquino‐annelated 1,4‐dithiins 11 and 2 with DMF/hydroxylamine‐O‐sulfonic acid/Fe++ ion system took place at the α‐quinolinyl positions and led to N,N‐dimethylcarbamoyl and N‐methyl‐N‐formylaminomethyl derivatives 6 , 8 , 12 and 7 , 9 , 13 , respectively. The 1H and 13C NMR spectra of N‐methyl‐N‐formylaminomethyl derivatives 7 , 9 , 13 showed the presence of rotational isomers E and Z regarding to the N‐methyl‐N‐formylaminomethyl substituent. The spectra of 6 , 7 , 8 , 12 and 13 were completely assigned with the use of 1D and 2D NMR techniques. In the case of rotational isomers 7a and 7b , the crucial correlations came from the NOE interaction between the methylene and methyl protons from CH2N(CH3)CHO groups and benzene‐rings protons. Synthesis of 2,3‐dihydro‐1,4‐dithiino[6,5‐e]quinoline 4‐oxide 14 was presented as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号