首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four conformers of the heterodimer o-anisic acid–formic acid, formed in a supersonic expansion, have been probed by Fourier transform microwave spectroscopy. Two of these forms have the typical double intermolecular hydrogen-bond cyclic structure. The other two show the o-anisic acid moiety bearing a trans-COOH arrangement supported by an intramolecular O−H⋅⋅⋅O bond to the neighbor methoxy group. In these conformers, formic acid interacts with o-anisic acid mainly through an intermolecular O−H⋅⋅⋅O hydrogen bond either to the O−H or to the C=O moieties, reinforced by other weak interactions. Surprisingly, the most abundant conformer in the supersonic expansion is the complex in which the o-anisic acid is in trans arrangement with the formic acid interacting with the O−H group. Such a trans-COOH arrangement in which the intramolecular hydrogen bond dominates over the usually observed double intermolecular hydrogen bond interaction has never been observed previously in an acid–acid dimer.  相似文献   

2.
The development of practical materials for (de)hydrogenation reactions is a prerequisite for the launch of a sustainable hydrogen economy. Herein, we present the design and construction of an atomically dispersed dual-metal site Co/Cu−N−C catalyst allowing significantly improved dehydrogenation of formic acid, which is available from carbon dioxide and green hydrogen. The active catalyst centers consist of specific CoCuN6 moieties with double-N-bridged adjacent metal-N4 clusters decorated on a nitrogen-doped carbon support. At optimal conditions the dehydrogenation performance of the nanostructured material (mass activity 77.7 L ⋅ gmetal−1 ⋅ h−1) is up to 40 times higher compared to commercial 5 % Pd/C. In situ spectroscopic and kinetic isotope effect experiments indicate that Co/Cu−N−C promoted formic acid dehydrogenation follows the so-called formate pathway with the C−H dissociation of HCOO* as the rate-determining step. Theoretical calculations reveal that Cu in the CoCuN6 moiety synergistically contributes to the adsorption of intermediate HCOO* and raises the d-band center of Co to favor HCOO* activation and thereby lower the reaction energy barrier.  相似文献   

3.
The influence of formic acid on water cluster aggregation has been investigated experimentally by mass spectrometry and tunable UV laser ionization applied to Na-doped clusters formed in the supersonic expansion of water vapors seeded with formic acid (FA) as well as theoretically using high level quantum chemistry methods. The mass spectra of Na−FA(H2O)n clusters show an enlarging of mass distribution toward heavier clusters with respect to the Na−(H2O)n clusters, suggesting similar mass distribution in neutral clusters and an influence of formic acid in water aggregation. Density functional theory and coupled-cluster type (DLPNO-CCSD(T)) calculations have been used to calculate structures and energetics of neutral and ionized Na−FA(H2O)n as well as neutral FA(H2O)n. Na-doped clusters are characterized by very stable geometries. The theoretical adiabatic ionization potential values match pretty well the measured appearance energies and the calculated first six electronic excited states show Rydberg-type characters, indicating possible autoionization contributions in the mass spectra. Finally, theoretical calculations on neutral FA(H2O)n clusters show the possibility of similarly stable structures in small clusters containing up to n=4–5 water molecules, where FA interacts significantly with waters. This suggests that FA can compete with water molecules in the starting stage of the aggregation process, by forming stable nucleation seed.  相似文献   

4.
Although the mechanism for the transformation of carbon dioxide to formate with copper hydride is well understood, it is not clear how formic acid is ultimately released. Herein, we show how formic acid is formed in the decomposition of the copper formate clusters Cu(II)(HCOO)3 and Cu(II)2(HCOO)5. Infrared irradiation resonant with the antisymmetric C−O stretching mode activates the cluster, resulting in the release of formic acid and carbon dioxide. For the binary cluster, electronic structure calculations indicate that CO2 is eliminated first, through hydride transfer from formate to copper. Formic acid is released via proton-coupled electron transfer (PCET) to a second formate ligand, evidenced by close to zero partial charge and spin density at the hydrogen atom in the transition state. Concomitantly, the two copper centers are reduced from Cu(II) to Cu(I). Depending on the detailed situation, either PCET or hydrogen atom transfer (HAT) takes place.  相似文献   

5.
Cocrystallizations of diboronic acids [1,3-benzenediboronic acid (1,3-bdba), 1,4-benzenediboronic acid (1,4-bdba) and 4,4’-biphenyldiboronic acid (4,4’-bphdba)] and bipyridines [1,2-bis(4-pyridyl)ethylene (bpe) and 1,2-bis(4-pyridyl)ethane (bpeta)] generated the hydrogen-bonded 1 : 2 cocrystals [(1,4-bdba)(bpe)2] (1), [(1,4-bdba)(bpeta)2] (2), [(1,3-bdba)(bpe)2(H2O)2] (3) and [(1,3-bdba)(bpeta)2(H2O)] (4), wherein 1,3-bdba involved hydrated assemblies. The linear extended 4,4’-bphdba exhibited the formation of 1 : 1 cocrystals [(4,4'-bphdba)(bpe)] (5) and [(4,4'-bphdba-me)(bpeta)] (6). For 6, a hemiester was generated by an in-situ linker transformation. Single-crystal X-ray diffraction revealed all structures to be sustained by B(O)−H⋅⋅⋅N, B(O)−H⋅⋅⋅O, Ow−H⋅⋅⋅O, Ow−H⋅⋅⋅N, C−H⋅⋅⋅O, C−H⋅⋅⋅N, π⋅⋅⋅π, and C−H⋅⋅⋅π interactions. The cocrystals comprise 1D, 2D, and 3D hydrogen-bonded frameworks with components that display reactivities upon cocrystal formation and within the solids. In 1 and 3, the C=C bonds of the bpe molecules undergo a [2+2] photodimerization. UV radiation of each compound resulted in quantitative conversion of bpe into cyclobutane tpcb. The reactivity involving 1 occurred via 1D-to-2D single-crystal-to-single-crystal (SCSC) transformation. Our work supports the feasibility of the diboronic acids as formidable structural and reactivity building blocks for cocrystal construction.  相似文献   

6.
Novel polyesteramides were synthesized by copolymerization in bulk of 5-(4,5-dihydro-1,3-oxazol-2-yl)-1-pentanol and various cyclic dicarboxylic acid anhydrides at temperatures varying between 120 and 200°C. The polymers resulting from polycondensation were characterized by means of 1H–NMR, FTIR, MALDI–TOF–MS, SEC, and DSC. The glass transition temperatures, Tg, of the copolymers were varied between −28 and +31°C as a function of the anhydride type. Molecular weights, Mw, were dependent on reaction temperature, reaction time, and anhydride type. Spectroscopic investigation of reaction products and esteramide model compounds provided evidence for imide by-product formation, which accounts for the low degree of polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3367–3376, 1999  相似文献   

7.
Metal–organic frameworks (MOFs) have been extensively explored as advanced chemical sensors in recent years. However, there are few studies on MOFs as acidic gas sensors, especially proton conductive MOFs. In this work, two new proton-conducting 3D MOFs, {[Co3(p-CPhHIDC)2(4,4′-bipy)(H2O)] ⋅ 2 H2O}n ( 1 ) (p-CPhH4IDC=2-(4-carboxylphenyl)-1 H-imidazole-4,5-dicarboxylic acid; 4,4′-bipy=4,4′-bipyridine) and {[Co3(p-CPhHIDC)2(bpe)(H2O)] ⋅ 3 H2O}n ( 2 ) (bpe=trans-1,2-bis(4-pyridyl)ethylene) have been solvothermally prepared and investigated their formic acid sensing properties. Both MOFs 1 and 2 show temperature- and humidity-dependent proton conductive properties and exhibit optimized proton conductivities of 1.04×10−3 and 7.02×10−4 S cm at 98 % relative humidity (RH) and 100 °C, respectively. The large number of uncoordinated carboxylic acid sites, free and coordination water molecules, and hydrogen-bonding networks inside the frameworks are favorable to the proton transfer. By measuring the impedance values after exposure to formic acid vapor at 98 % or 68 % RH and 25 °C, both MOFs indicate reproducibly high sensitivity to the analyte. The detection limit of formic acid vapor is as low as 35 ppm for 1 and 70 ppm for 2 . Meanwhile, both MOFs also show commendable selectivity towards formic acid among interfering solutions. The proton conducting and formic acid sensing mechanisms have been suggested according to the structural analysis, Ea calculations, N2 and water vapor absorptions, PXRD and SEM measurements. This work will open a new avenue for proton-conductive MOF-based impedance sensors and promote the potential application of these MOFs for indirectly monitoring the concentrations of formic acid vapors.  相似文献   

8.
Rational design of the proximal coordination of an active site to achieve its optimum catalytic activity is the ultimate goal in single-atom catalysis, but still challenging. Here, we report theoretical prediction and experimental realization of an asymmetrically coordinated iridium single-atom catalyst (IrN3O) for the formic acid oxidation reaction (FAOR). Theoretical calculations reveal that the substitution of one or two nitrogen with more electronegative oxygen in the symmetric IrN4 motif splits and downshifts the Ir 5d orbitals with respect to the Fermi level, moderating the binding strength of key intermediates on IrN4−xOx (x=1, 2) sites, especially that the IrN3O motif shows ideal activity for FAOR with a near-zero overpotential. The as-designed asymmetric Ir motifs were realized by pyrolyzing Ir precursor with oxygen-rich glucose and nitrogen-rich melamine, exhibiting a mass activity of 25 and 87 times greater than those of state-of-the-art Pd/C and Pt/C, respectively.  相似文献   

9.
The X‐ray single‐crystal structure determinations of the chemically related compounds 2‐amino‐1,3,4‐thiadiazolium hydrogen oxalate, C2H4N3S+·C2HO4, (I), 2‐amino‐1,3,4‐thiadiazole–succinic acid (1/2), C2H3N3S·2C4H6O4, (II), 2‐amino‐1,3,4‐thiadiazole–glutaric acid (1/1), C2H3N3S·C5H8O4, (III), and 2‐amino‐1,3,4‐thiadiazole–adipic acid (1/1), C2H3N3S·C6H10O4, (IV), are reported and their hydrogen‐bonding patterns are compared. The hydrogen bonds are of the types N—H...O or O—H...N and are of moderate strength. In some cases, weak C—H...O interactions are also present. Compound (II) differs from the others not only in the molar ratio of base and acid (1:2), but also in its hydrogen‐bonding pattern, which is based on chain motifs. In (I), (III) and (IV), the most prominent feature is the presence of an R22(8) graph‐set motif formed by N—H...O and O—H...N hydrogen bonds, which are present in all structures except for (I), where only a pair of N—H...O hydrogen bonds is present, in agreement with the greater acidity of oxalic acid. There are nonbonding S...O interactions present in all four structures. The difference electron‐density maps show a lack of electron density about the S atom along the S...O vector. In all four structures, the carboxylic acid H atoms are present in a rare configuration with a C—C—O—H torsion angle of ∼0°. In the structures of (II)–(IV), the C—C—O—H torsion angle of the second carboxylic acid group has the more common value of ∼|180|°. The dicarboxylic acid molecules are situated on crystallographic inversion centres in (II). The Raman and IR spectra of the title compounds are presented and analysed.  相似文献   

10.
《化学:亚洲杂志》2017,12(14):1765-1772
The Ni‐catalyzed Suzuki–Miyaura coupling of N ‐tert‐butoxycarbonyl (N ‐Boc)‐protected amides provides a versatile strategy for the construction of C−C bonds. In this study, density functional theory (DFT) methods have been used to elucidate the mechanism of this reaction, with particular emphasis on the roles of N ‐Boc, K3PO4 and H2O. Our results corroborated those of previous reports, indicating that the overall catalytic cycle consists of three steps, including oxidative addition, transmetalation, and reductive elimination. Three of the possible transmetalation mechanisms were examined to interpret the effects of K3PO4 and H2O. According to the most feasible of these transmetalation mechanisms, K3PO4 (acting as a Lewis base) would initially interact with the Lewis acid PhBpin to give a K3PO4‐PhBpin complex, which would readily undergo a hydrogen transfer step with H2O. The H transfer in the transmetalation step was determined to be the rate‐determining step. Notably, the theoretical results showed good agreement with the experimental data.  相似文献   

11.
Rate constants for the reaction of ozone with methylvinyl ketone (H2C(DOUBLEBOND)CHC(O)CH3), methacrolein (H2C(DOUBLEBOND)C(CH3)CHO), methacrylic acid (H2C(DOUBLEBOND)C(CH3)C(O)OH), and acrylic acid (H2C(DOUBLEBOND)CHC(O)OH) were measured at room temperature (296±2 K) in the presence of a sufficient amount of cyclohexane to scavenge OH-radicals. Results from pseudo-first-order experiments in the presence of excess ozone were found not to be consistent with relative rate measurements. It appeared that the formation of the so-called Criegee-intermediates leads to an enhanced decrease in the concentration of the two organic acids investigated. It is shown that the presence of formic acid, which is known to react efficiently with Criegee-intermediates, diminishes the observed removal rate of the organic acids. The rate constant for the reaction of ozone with the unsaturated carbonyl compounds methylvinyl ketone and methacrolein was found not to be influenced by the addition of formic acid. Rate constants for the reaction of ozone determined in the presence of excess formic acid are (in cm3 molecule−1 s−1): methylvinyl ketone (5.4±0.6)×10−18; methacrolein (1.3±0.14)×10−18; methacrylic acid (4.1±0.4)×10−18; and acrylic acid (0.65±0.13)×10−18. Results are found to be consistent with the Criegee mechanism of the gas-phase ozonolysis. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 769–776, 1998  相似文献   

12.
Metal‐organic frameworks (MOFs) as new classes of proton‐conducting materials have been highlighted in recent years. Nevertheless, the exploration of proton‐conducting MOFs as formic acid sensors is extremely lacking. Herein, we prepared two highly stable 3D isostructural lanthanide(III) MOFs, {(M(μ3‐HPhIDC)(μ2‐C2O4)0.5(H2O))?2 H2O}n (M=Tb ( ZZU‐1 ); Eu ( ZZU‐2 )) (H3PhIDC=2‐phenyl‐1H‐imidazole‐4,5‐dicarboxylic acid), in which the coordinated and uncoordinated water molecules and uncoordinated imidazole N atoms play decisive roles for the high‐performance proton conduction and recognition ability for formic acid. Both ZZU‐1 and ZZU‐2 show temperature‐ and humidity‐dependent proton‐conducting characteristics with high conductivities of 8.95×10?4 and 4.63×10?4 S cm‐1 at 98 % RH and 100 °C, respectively. Importantly, the impedance values of the two MOF‐based sensors decrease upon exposure to formic acid vapor generated from formic aqueous solutions at 25 °C with good reproducibility. By comparing the changes of impedance values, we can indirectly determine the concentration of HCOOH in aqueous solution. The results showed that the lowest detectable concentrations of formic acid aqueous solutions are 1.2×10?2 mol L?1 by ZZU‐1 and 2.0×10?2 mol L?1 by ZZU‐2 . Furthermore, the two sensors can distinguish formic acid vapor from interfering vapors including MeOH, N‐hexane, benzene, toluene, EtOH, acetone, acetic acid and butane. Our research provides a new platform of proton‐conductive MOFs‐based sensors for detecting formic acid.  相似文献   

13.
Easily accessible via a simple esterification of alcohols with formic acid, alkyl formates are used as a novel class of transfer hydroalkylation reagents, CO2 acting as a traceless linker. As a proof-of-concept, their reactivity in the transfer hydroalkylation of imines is investigated, using a ruthenium-based catalyst and LiI as promoter to cleave the C−O σ-bond of the formate scaffold. Providing tertiary amines, the reaction displays a divergent regioselectivity compared to previously reported transfer hydroalkylation strategies.  相似文献   

14.
Digallane [L1Ga−GaL1] ( 1 , L1=dpp-bian=1,2-[(2,6-iPr2C6H3)NC]2C12H6) reacts with RN=C=O (R=Ph or Tos) by [2+4] cycloaddition of the isocyanate C=N bonds across both of its C=C−N−Ga fragments to afford [L1(O=C−NR)Ga−Ga(RN−C=O)L1] (R=Ph, 3 ; R=Tos, 4 ). The reactions with both isocyanates result in new C−C and N−Ga single bonds. In the case of allyl isocyanate, the [2+4] cycloaddition across one C=C−N−Ga fragment of 1 is accompanied by insertion of a second allyl isocyanate molecule into the Ga−N bond of the same fragment to afford compound [L1Ga−Ga(AllN− C=O)2L1] ( 5 ) (All=allyl). In the presence of Na metal, the related digallane [L2Ga−GaL2] ( 2 ; L2=dpp-dad=[(2,6-iPr2C6H3)NC(CH3)]2) is converted into the gallium(I) carbene analogue [L2Ga:] ( 2 A ), which undergoes a variety of reactions with isocyanate substrates. These include the cycloaddition of ethyl isocyanate to 2 A affording [Na2(THF)5]{L2Ga[EtN−C(O)]2GaL2} ( 6 ), cleavage of the N=C bond with release of 1 equiv. of CO to give [Na(THF)2]2[L2Ga(p-MeC6H4)(N−C(O))2−N(p-MeC6H4)]2 ( 7 ), cleavage of the C=O bond to yield the di-O-bridged digallium compound [Na(THF)3]2[L2Ga-(μ-O)2-GaL2] ( 8 ), and generation of the further addition product [Na2(THF)5][L2Ga(CyNCO2)]2 ( 9 ). Complexes 3 – 9 have been characterized by NMR (1H, 13C), IR spectroscopy, elemental analysis, and X-ray diffraction analysis. Their electronic structures have been examined by DFT calculations.  相似文献   

15.
Depending on the reaction partner, the organic ditopic molecule isonicotinic acid (Hina) can act either as a Brønsted acid or base. With sulfuric acid, the pyridine ring is protonated to become a pyridinium cation. Crystallization from ethanol affords the title compound tris(4‐carboxypyridinium) hydrogensulfate sulfate monohydrate, 3C6H6NO2+·HSO4·SO42−·H2O or [(H2ina)3(HSO4)(SO4)(H2O)]. This solid contains 11 classical hydrogen bonds of very different flavour and nonclassical C—H…O contacts. All N—H and O—H donors find at least one acceptor within a suitable distance range, with one of the three pyridinium H atoms engaged in bifurcated N—H…O hydrogen bonds. The shortest hydrogen‐bonding O…O distance is subtended by hydrogensulfate and sulfate anions, viz. 2.4752 (19) Å, and represents one of the shortest hydrogen bonds ever reported between these residues.  相似文献   

16.
4,4′‐Bipyridine‐1,1′‐diium (H2bipy) acetylenedicarboxylate, C10H12N22+·C4O42−, (1), is a new member of a family of related structures with similar unit‐cell parameters. The structures in this family reported previously [Chen et al. (2012). CrystEngComm, 14 , 6400–6403] are (H2bipy)[Cu(ox)2] (ox is oxalate), (2), (H2bipy)[NaH(ox)2], (3), and (H2bipy)[H2(ox)2], (4). Compound (1) has a one‐dimensional structure, in which H2bipy2+ cations and acetylenedicarboxylate (ADC2−) anions are linked through a typical supramolecular synthon, i.e.R22(7), and form linear `–cation–anion–' ribbons. Through an array of nonclassical C—H...O hydrogen bonds, adjacent ribbons interact to give two‐dimensional sheets. These sheets stack to form a layered structure viaπ–π interactions between the H2bipy2+ cations of neighbouring layers. The supramolecular isostructurality of compounds (1)–(4) is ascribed to the synergistic effect of multiple interactions in these structures. The balanced strong and weak intermolecular interactions stabilizing this structure type include strong charge‐assisted N—H...O hydrogen bonds, C—H...O contacts and π–π interactions.  相似文献   

17.
A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for simultaneous determination of six flavonoid glycosides – isoorientin ( 1 ), orientin ( 2 ), 2″‐O‐β ‐d ‐xylopyranosyl isoorientin ( 3 ), 2″‐O‐β ‐d ‐xylopyranosyl isovitexin ( 4 ), 6‐C‐l ‐α ‐arabipyranosyl vitexin ( 5 ) and vitexin ( 6 ) – in rat plasma using isoquercitrin as the internal standard (IS). Plasma samples were prepared by a one‐step protein precipitation with acetonitrile. Chromatographic analysis was carried out on a 25 cm C18 column with a gradient mobile phase consisting of acetonitrile and 0.1% aqueous formic acid. Six analytes and IS were detected through electrospray ionization in negative‐ion selection reaction monitoring mode. The mass transitions were as follows: m/z 447.2 → 327.0 for 1 , m/z 447.2 → 327.0 for 2 , m/z 579.3 → 458.9 for 3 , m/z 563.0 → 293.1 for 4 , m/z 563.0 → 353.0 for 5 , m/z 431.1 → 311.1 for 6 , and m/z 463.1 → 300.2 for IS. Calibration curves exhibited good linearity (r 2 > 0.9908) over a wide concentration range for all compounds. Intra‐ and inter‐day precision (RSD, %) at four different levels were both <14.2% and the accuracy (RE, %) ranged from −11.9 to 12.0%. The extraction recoveries of the six components ranged from 88.2 to 103.6%. The validated assay was successfully applied to the pharmacokinetic studies of the six components in male rat plasma after intravenous administration of total flavonoids of Scorzonera austriaca Wild.  相似文献   

18.
A positively charged lamellar coordination polymer based on a flexible triphosphonic acid linker is reported. [Gd(H4nmp)(H2O)2]Cl ? 2 H2O ( 1 ) [H6nmp=nitrilotris(methylenephosphonic acid)] was obtained by a one‐pot approach by using water as a green solvent and by forcing the inclusion of additional acid sites by employing HCl in the synthesis. Compound 1 acts as a versatile heterogeneous acid catalyst with outstanding activity in organic reactions such as alcoholysis of styrene oxide, acetalization of benzaldehyde and cyclohexanaldehyde and ketalization of cyclohexanone. For all reaction systems, very high conversions were reached (92–97 %) in only 15–30 min under mild conditions (35 °C, atmospheric pressure). The coordination polymer exhibits a protonic conductivity of 1.23×10?5 S cm?1 at 98 % relative humidity and 40 °C.  相似文献   

19.
The stoichiometry, X‐ray structures and stability of four pharmaceutical cocrystals previously identified from liquid‐assisted grinding (LAG) of 11‐azaartemisinin (11‐Aza; systematic name: 1,5,9‐trimethyl‐14,15,16‐trioxa‐11‐azatetracyclo[10.3.1.04,13.08,13]hexadecan‐10‐one) with trans‐cinnamic (Cin), maleic (Mal) and fumaric (Fum) acids are herein reported. trans‐Cinnamic acid, a mono acid, forms 1:1 cocrystal 11‐Aza:Cin ( 1 , C15H23NO4·C9H8O2). Maleic acid forms both 1:1 cocrystal 11‐Aza:Mal ( 2 , C15H23NO4·C4H4O4), in which one COOH group is involved in self‐catenation, and 2:1 cocrystal 11‐Aza2:Mal ( 3 , 2C15H23NO4·C4H4O4). Its isomer, fumaric acid, only affords 2:1 cocrystal 11‐Aza2:Fum ( 4 ). All cocrystal formation appears driven by acid–lactam R22(8) heterosynthons with short O—H…O=C hydrogen bonds [O…O = 2.56 (2) Å], augmented by weaker C=O…H—N contacts. Despite a better packing efficiency, cocrystal 3 is metastable with respect to 2 , probably due to a higher conformational energy for the maleic acid molecule in its structure. In each case, the microcrystalline powders from LAG were useful in providing seeding for the single‐crystal growth.  相似文献   

20.
Long B  Long ZW  Wang YB  Tan XF  Han YH  Long CY  Qin SJ  Zhang WJ 《Chemphyschem》2012,13(1):323-329
The formic acid catalyzed gas‐phase reaction between H2O and SO3 and its reverse reaction are respectively investigated by means of quantum chemical calculations at the CCSD(T)//B3LYP/cc‐pv(T+d)z and CCSD(T)//MP2/aug‐cc‐pv(T+d)z levels of theory. Remarkably, the activation energy relative to the reactants for the reaction of H2O with SO3 is lowered through formic acid catalysis from 15.97 kcal mol?1 to ?15.12 and ?14.83 kcal mol?1 for the formed H2O ??? SO3 complex plus HCOOH and the formed H2O ??? HCOOH complex plus SO3, respectively, at the CCSD(T)//MP2/aug‐cc‐pv(T+d)z level. For the reverse reaction, the energy barrier for decomposition of sulfuric acid is reduced to ?3.07 kcal mol?1 from 35.82 kcal mol?1 with the aid of formic acid. The results show that formic acid plays a strong catalytic role in facilitating the formation and decomposition of sulfuric acid. The rate constant of the SO3+H2O reaction with formic acid is 105 times greater than that of the corresponding reaction with water dimer. The calculated rate constant for the HCOOH+H2SO4 reaction is about 10?13 cm3 molecule?1 s?1 in the temperature range 200–280 K. The results of the present investigation show that formic acid plays a crucial role in the cycle between SO3 and H2SO4 in atmospheric chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号