首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dimeric complex [Li(Ph2pz)(OEt2)]2 ( 1 ) and tetrameric cluster [Na(Ph2pz)(thf)]4 ( 2 ) were prepared by treatment of alkali‐metal reagents (nBuLi and Na{N(SiMe3)2}, respectively) with 3,5‐diphenylpyrazole (Ph2pzH) in Et2O ( 1 ) or THF ( 2 ). The polymer [Na(tBu2pz)]n ( 3 ) was obtained from reaction at elevated temperature in a sealed tube between Na metal and 3,5‐di‐tert‐butylpyrazole (tBu2pzH). The complex [Na4(tBu2pz)2(thf)3(obds)]2 ( 4 ; obds=(OSiMe2)2O) was obtained as a minor product from prolonged treatment of tBu2pzH with elemental sodium in a silicone‐greased flask. All four alkali‐metal pyrazolato complexes were characterized by IR and 1H NMR spectroscopy and X‐ray crystallography.The Li dimer 1 displays μ‐η21 lithium–pyrazolato binding, in which both lithium atoms are four‐coordinate. Room‐ and variable‐temperature NMR studies (1H, 13C, and 7Li) of 1 suggest similar behavior in solution, with peaks coalescing at low temperatures. Complexes 2 and 4 display distorted cubane structures. In 2 , all the sodium atoms are five‐coordinate, whereas 4 contains two sodium/pyrazolate/thf clusters (4:2:3 ratio) bridged by two obds2? units, as well as two four‐coordinate and two five‐coordinate sodium atoms. Compound 3 is composed of two independent chains with the unusual coordination modes μ3‐η522, μ3‐η521, and μ3‐η421, with five‐, six‐, and seven‐coordinate sodium atoms. Two oxo‐centered M8 cage complexes [(tBu2pz)6Li8O] ( 5 ) and [(tBu2pz)6Na8O] ( 6 ) were obtained as by‐products from attempted preparation of [Li(tBu2pz)] and [Na(tBu2pz)], respectively, and their structures were determined.  相似文献   

2.
Direct thermally induced reactions between rare earth metals (Ln = Y,Ce, Dy, Ho, and Er) activated by Hg metal and 3,5‐diphenylpyrazole (Ph2pzH) or 3,5‐di‐tert‐butylpyrazole (tBu2pzH) yielded either homoleptic complexes [Lnn(R2pz)3n] or a heteroleptic complex [Ln(Ph2pz)3(Ph2pzH)2] From Ph2pzH, [Ce3(Ph2pz)9], [Dy2(Ph2pz)6], [Ho2(Ph2pz)6], and [Y(Ph2pz)3(Ph2pzH)2] were isolated. The first has a bowed trinuclear Ce3 backbone with two η2 pyrazolate ligands on the terminal metal atoms and one on the middle, and bridging by both μ‐η22 and μ‐η25 ligands between the terminal and the central Ce atoms. Although both the Dy and Ho complexes are dinuclear, the former has the rare μ‐η21 bridging whilst the latter has μ‐η22 bridging. Thus the dysprosium complex is seven‐coordinate and the holmium is eight‐coordinate, in contrast to any correlation with Ln3+ ionic radii, and the series has a remarkable structural discontinuity. The heteroleptic Y complex is eight coordinate with three chelating Ph2pz and two transoid unidentate Ph2pzH ligands. From tBu2pzH, dimeric [Ln2(tBu2pz)4] (Ln = Ce, Er) were isolated and are isomorphous with eight coordinate Ln atoms ligated by two chelating terminal tBu2pz and two μ‐η22 tBu2pz donor groups. They are also isomorphous with previously reported La, Nd, Yb, and Lu complexes.  相似文献   

3.
Unique outcomes have emerged from the redox transmetallation/ protolysis (RTP) reactions of europium metal with [Ag(C6F5)(py)] (py=pyridine) and pyrazoles (RR′pzH). In pyridine, a solvent not normally used for RTP reactions, the products were mainly EuII complexes, [Eu(RR′pz)2(py)4] (RR′pz=3,5-diphenylpyrazolate (Ph2pz) 1 ; 3-(2-thienyl)-5-trifluoromethylpyrazolate (ttfpz) 2 ; 3-methyl-5-phenylpyrazolate (PhMepz) 3 ). However, use of 3,5-di-tert-butylpyrazole (tBu2pzH) gave trivalent [Eu(tBu2pz)3(py)2] 4 , whereas the bulkier N,N′-bis(2,6-difluorophenyl)formamidine (DFFormH) gave divalent [Eu(DFForm)2(py)3] 5 . In tetrahydrofuran (thf), the usual solvent for RTP reactions, C−F activation was observed for the first time with [Ag(C6F5)(py)] in such reactions. Thus trivalent [{Eu2(Ph2pz)4(py)4(thf)2(μ-F)2}{Eu2(Ph2pz)4(py)2(thf)4(μ-F)2}] ( 6 ), [Eu2(ttfpz)4(py)2(dme)2(μ-F)2] ( 7 ), [Eu2(tBu2pz)4(dme)2(μ-F)2] ( 8 ) were obtained from the appropriate pyrazoles, the last two after crystallization from 1,2-dimethoxyethane (dme). Surprisingly 3,5-dimethylpyrazole (Me2pzH) gave the divalent cage [Eu6(Me2pz)10(thf)6(μ-F)2] ( 9 ). This has a compact ovoid core held together by bridging fluoride, thf, and pyrazolate ligands, the last including the rare μ4-1η5(N2C3): 2η2(N,N′): 3κ(N): 4κ(N′) pyrazolate binding mode. With the bulky N,N′-bis(2,6-diisopropylphenyl)formamidine (DippFormH), which often favours C−F activation in RTP reactions, neither oxidation to EuIII nor C−F activation was observed and [Eu(DippForm)2(thf)2] ( 10 ) was isolated. By contrast, Eu reacted with Bi(C6F5)3 and Ph2pzH or tBu2pzH in thf without C−F activation, to give [Eu(Ph2pz)2(thf)4] ( 11 ) and [Eu(tBu2pz)3(thf)2] ( 12 ) respectively, the oxidation state outcomes corresponding to that for use of [Ag(C6F5)(py)] in pyridine.  相似文献   

4.
The role of intramolecular metal???π‐arene interactions has been investigated in the solid‐state structures of a series of main group compounds supported by the bulky amide ligands, [N(tBuAr)(SiR3)]? (tBuAr=2,6‐(CHPh2)2‐4‐tBuC6H2, R=Me, Ph). The lithium and potassium amide salts showed different patterns of solvation and demonstrated that the SiPh3 substituent is able to be involved in stabilizing the electrophilic metal. These group 1 metal compounds served as ligand transfer reagents to access a series of bismuth(III) halides. Chloride extraction from Bi(N{tBuAr}{SiPh3})Cl2 using AlCl3 afforded the 1:1 salt [Bi(N{tBuAr}{SiPh3})Cl][AlCl4]. This was accompanied by a significant rearrangement of the stabilizing π‐arene contacts in the solid‐state. Attempted preparation of the corresponding tetraphenylborate salt resulted in phenyl‐transfer and generation of the neutral Bi(N{tBuAr}{SiPh3})(Ph)Cl.  相似文献   

5.
S−F-bond activation of sulfur tetrafluoride at [Rh(Cl)(tBuxanPOP)] ( 1 ; tBuxanPOP=9,9-dimethyl-4,5-bis-(di-tert-butylphosphino)-xanthene) led to the formation of the cationic complex [Rh(F)(Cl)(SF2)(tBuxanPOP)][SF5] ( 2 a ) together with trans-[Rh(Cl)(F)2(tBuxanPOP)] ( 3 ) and cis-[Rh(Cl)2(F)(tBuxanPOP)] ( 4 ) which both could also be obtained by the reaction of SF5Cl with 1 . In contrast to that, the conversion of SF4 at the methyl complex [Rh(Me)(tBuxanPOP)] ( 5 ) gave the isolable and room-temperature stable cationic λ4-trifluorosulfanyl complex [Rh(Me)(SF3)(tBuxanPOP)][SF5] ( 6 ). Treatment of 6 with the Lewis acids BF3 or AsF5 produced the dicationic difluorosulfanyl complex [Rh(Me)(SF2)(tBuxanPOP)][BF4]2 ( 8 a ) or [Rh(Me)(SF2)(tBuxanPOP)][AsF6]2 ( 8 b ), respectively. Refluorination of 8 a was possible with the use of dimethylamine giving [Rh(Me)(SF3)(tBuxanPOP)][BF4] ( 9 ). A reaction of 6 with trichloroisocyanuric acid (TClCA) gave the fluorido complex [Rh(F)(Cl)(SF2)(tBuxanPOP)][Cl] ( 2 b ) together with chloromethane and SF5Cl.  相似文献   

6.
[(tBu)2P]2P? P[P(tBu)2]2 from LiP[P(tBu)2]2 and 1,2-Dibromomethane. Pyrolysis of tBu2P? P?P(Br)tBu2 All products of the reaction of [tBu2P]2PLi 1 with 1,2-dibromoethane 2 were investigated. Already at ?70°C tBu2P? P?P(Br)tBu2 3 as main product and [tBu2P]2PBr 4 are formed. Only with an excess of 1 also [tBu2P]P? P[P(tBu)2]2 5 is obtained. Warming of a pure solution of 3 in toluene from ?70°C to ?30°C leads to 4 , and at 20°C tBu2PBr and the cyclophosphanes P4[P(tBu)2]4 and P3[P(tBu)2]3 are observed. 5 does not result from 3 , it's rather a byproduct from the reaction of 1 with 4 . Also the ylide 3 and 1 yields 5 .  相似文献   

7.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

8.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

9.
The platinum complex [Pt(ItBuiPr′)(ItBuiPr)][BArF] interacts with tertiary silanes to form stable (<0 °C) mononuclear PtII σ‐SiH complexes [Pt(ItBuiPr′)(ItBuiPr)(η1‐HSiR3)][BArF]. These compounds have been fully characterized, including X‐ray diffraction methods, as the first examples for platinum. DFT calculations (including electronic topological analysis) support the interpretation of the coordination as an unusual η1‐SiH. However, the energies required for achieving a η2‐SiH mode are rather low, and is consistent with the propensity of these derivatives to undergo Si?H cleavage leading to the more stable silyl species [Pt(SiR3)(ItBuiPr)2][BArF] at room temperature.  相似文献   

10.
2-Iminopyrroles [HtBuL, 4-tert-butyl phenyl(pyrrol-2-ylmethylene)amine] are non-fluorescent π systems. However, they display blue fluorescence after deprotonation with alkali metal bases in the solid state and in solution at room temperature. In the solid state, the alkali metal 2-imino pyrrolates, M(tBuL), aggregate to dimers, [M(tBuL)(NCR)]2 (M=Li, R=CH3, CH(CH3)CNH2), or polymers, [M(tBuL)]n (M=Na, K). In solution (solv=CH3CN, DMSO, THF, and toluene), solvated, uncharged monomeric species M(tBuL)(solv)m with N,N′-chelated alkali metal ions are present. Due to the electron-rich pyrrolate and the electron-poor arylimino moiety, the M(tBuL) chromophore possesses a low-energy intraligand charge-transfer (ILCT) excited state. The chelated alkali cations rigidify the chromophore, restricting intramolecular motions (RIM) by the chelation-enhanced fluorescence (CHEF) effect in solution and, consequently, switch-on a blue fluorescence emission.  相似文献   

11.
The reaction of dimethylzinc and tri(tert‐butyl)silylphosphane in toluene yielded dimeric methylzinc tri(tert‐butyl)silylphosphanide ( 1 ) which crystallized tetrameric. Compound 1 was deprotonated with sodium in DME and the solvent‐separated dimeric ion pair [(dme)3Na]+ [(dme)Na(MeZn)2(μ‐PSitBu3)2]? ( 2 ) was isolated. The reaction of 1 in THF with two equivalents of potassium and one equivalent of tri(tert‐butyl)silylphosphane gave dimeric [{tBu3Si(H)P}{(thf)2K}2(MeZn)(PSitBu3)]2 ( 3 ). Both of these phosphanylzincates contain Zn2P2 cycles with Zn‐P bond lengths of approximately 237 pm, whereas in 1 larger Zn‐P bond lengths of 248.5 pm were found due to the larger coordination numbers of the phosphorus and zinc atoms.  相似文献   

12.
tBu2P–PLi–PtBu2·2THF reacts with [cis‐(Et3P)2MCl2] (M = Ni, Pd) yielding [(1,2‐η‐tBu2P=P–PtBu2)Ni(PEt3)Cl] and [(1,2‐η‐tBu2P=P–PtBu2)Pd(PEt3)Cl], respectively. tBu2P– PLi–PtBu2 undergoes an oxidation process and the tBu2P–P–PtBu2 ligand adopts in the products the structure of a side‐on bonded 1,1‐di‐tert‐butyl‐2‐(di‐tert‐butylphosphino)diphosphenium cation with a short P–P bond. Surprisingly, the reaction of tBu2P–PLi–PtBu2·2THF with [cis‐(Et3P)2PtCl2] does not yield [(1,2‐η‐tBu2P=P–PtBu2)Pt(PEt3)Cl].  相似文献   

13.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

14.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses.  相似文献   

15.
In strong alkaline media, the reaction of 2-(tert-butylamino)ethanol (3: R?=?But) with CS2 at 0°C produced a cyclic dithiocarbamate, 3-tert-butylthiazolidine-2-thione (1: R?=?But), rather than alkaline metal or ammonium salts of [S2CN(But)CH2CH2OH]?. This is in contrast to isolation of stable alkaline metal or ammonium salts of [S2CN(R)CH2CH2OH]? (R?=?Me, Et, Pr, or CH2CH2OH) obtained in analogous reactions. The use of Ni(OAc)2, both as a source of Ni(II) and a weaker base, in a one-pot reaction with (3: R?=?But) and CS2, successfully gave the first reported metal complex of [S2CN(But)CH2CH2OH]?, namely [Ni{S2CN(But)CH2CH2OH}2] (2: R?=?But). Compounds 1 and 2 have been fully characterized by infrared and NMR spectroscopies, and by X-ray crystallography. DFT calculations on the cyclization and stabilities of [S2CN(R)CH2CH2OH]? (R?=?Pr and But) have been carried out.  相似文献   

16.
The thermodynamics of halogen bonding of a series of isostructural Group 10 metal pincer fluoride complexes of the type [(3,5-R2-tBuPOCOPtBu)MF] (3,5-R2-tBuPOCOPtBu=κ3-C6HR2-2,6-(OPtBu2)2 with R=H, tBu, COOMe; M=Ni, Pd, Pt) and iodopentafluorobenzene was investigated. Based on NMR experiments at different temperatures, all complexes 1-tBu (R=tBu, M=Ni), 2-H (R=H, M=Pd), 2-tBu (R=tBu, M=Pd), 2-COOMe (R=COOMe, M=Pd) and 3-tBu (R=tBu, M=Pt) form strong halogen bonds with Pd complexes showing significantly stronger binding to iodopentafluorobenzene. Structural and computational analysis of a model adduct of complex 2-tBu with 1,4-diiodotetrafluorobenzene as well as of structures of iodopentafluorobenzene in toluene solution shows that formation of a type I contact occurs.  相似文献   

17.
Synthesis of a Hexanuclear Calcium–Phosphorus‐Cage The metalation of tri(tert‐butyl)silylphosphane with calcium bis[bis(trimethylsilyl)amide] yields the dimer {(Me3Si)2N–Ca(THF)[μ‐P(H)SitBu3]}2 ( 1 ). In THF monomerization occurs and dismutation reactions lead to the homoleptic compounds, namely (THF)2Ca[N(SiMe3)2]2 and (THF)4Ca[P(H)SitBu3]2. In toluene, 1 undergoes dismutation reactions, bis(tetrahydrofuran)calcium bis[bis(trimethylsilyl)amide] is regained and [(Me3Si)2N–Ca(THF)]2Ca[P(H)SitBu3]4 ( 2 ) precipitates. At raised temperatures, 2 undergoes a homometallic metalation with the loss of two equivalents of HN(SiMe3)2 and dimerizes. The thus formed cage compound (THF)2Ca6[PSitBu3]4[P(H)SitBu3]4 ( 3 ) with a central Ca4P4 heterocubane moiety crystallizes upon cooling of the toluene solution. The molecular structures of 2 and 3 were determined.  相似文献   

18.
Addition of MesN3 (Mes=2,4,6-Me3C6H2) to germylene [(NONtBu)Ge] (NONtBu=O(SiMe2NtBu)2) ( 1 ) gives germanimine, [(NONtBu)Ge=NMes] ( 2 ). Compound 2 behaves as a metalloid, showing reactivity reminiscent of both transition metal-imido complexes, undergoing [2+2] addition with heterocumulenes and protic sources, as well as an activated diene, undergoing a [4+2] cycloaddition, or “metallo”-Diels–Alder, reaction. In the latter case, the diene includes the Ge=N bond and π-system of the Mes substituent, which is reactive towards dienophiles including benzaldehyde, benzophenone, styrene, and phenylacetylene.  相似文献   

19.
The synthesis and characterization of rare 1,3-diphosphacyclobutene transition-metal complexes is described. Reactions of the cobalt-hydride complex [Co(P2C2tBu2)2H] ( G ) with nBuLi, tBuLi, or PhLi afforded [Li(solv)x{Co(η3-P2C2tBu2HR)(η4-P2C2tBu2)}] ( 1 : R=nBu, (solv)x=(Et2O)2; 2 : R=tBu, (solv)x=(thf)2; 3 : R=Ph, (solv)x=(Et2O)(thf)2), with an η3-coordinated 1,3-diphosphacyclobutene ligand as a result of organyl-anion attack at one of the phosphorus atoms of the bis(1,3-diphosphacyclobutadiene) backbone. In contrast to the reactions with PhLi, the aryl-magnesium compounds p-tolyl magnesium chloride and p-fluorophenyl magnesium bromide deprotonate [Co(P2C2tBu2)2H] to give the magnesium salt [Mg(MeCN)6][Co(η4-P2C2tBu2)2]2 ( 4 ), which contains a bis(1,3-diphosphacyclobutadiene)-cobaltate anion. The [Co(η4-P2C2tBu2)2] anions are well separated from the octahedral [Mg(MeCN)6]2+ cation in the molecular structure of 4 . Compound 1 reacts with Me3SiCl to give neutral [Co(η3-P2C2tBu2HnBu)(η4-P2C2tBu2SiMe3)] ( 5 , 52 % yield) with an SiMe3 group attached to one of the P atoms of the previously unfunctionalized backbone.  相似文献   

20.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号