首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrational frequencies of guest molecules in clathrate hydrates reflect the molecular environment and dynamical behavior of molecules. A detailed understanding of the mechanism for the vibrational frequency changes of the guest molecules in the clathrate hydrate cages is still incomplete. In this study, molecular vibrations of methane molecules in a structure I clathrate hydrate are calculated from ab initio molecular dynamics simulation. The vibrational spectra of methane are computed by Fourier transform of autocorrelation functions, which reveal distinct separation of each vibrational mode. Calculated symmetric and asymmetric stretching vibrational frequencies of methane molecules are lower in the large cages than in the small cages (8 and 16 cm(-1) for symmetric and asymmetric stretching, respectively). These changes are closely linked with the C-H bond length. The vibrational frequencies for the bending and rocking vibrational modes nearly overlap in each of the cages.  相似文献   

2.
We have observed several IR bands of CH3CN-BF3 in neon and nitrogen matrices. For the 11B isotopomer in neon matrices, we observed the BF3 symmetric deformation band (nu7) as a doublet at 600 and 603 cm(-1), the BF3 symmetric stretching band (nu6) as a doublet at 833 and 838 cm(-1), the BF3 asymmetric stretching mode (nu13) at 1281 cm(-1) (partially obscured), and the C-N stretching mode (nu2) as a doublet at 2352 and 2356 cm(-1). The nitrogen matrix data are largely consistent with those reported recently, though we do propose a refinement of one band assignment. Comparisons of the frequencies of a few key, structurally sensitive vibrational modes either observed in various condensed-phase environments or calculated for two minimum-energy gas-phase structures indicate that inert matrix media significantly alter the structural properties of CH3CN-BF3. Specifically, the B-N dative bond compresses relative to the gas phase and other concomitant changes occur as well. Furthermore, the frequency shifts depict structural changes that occur across the various matrix hosts in a manner that largely parallels the degree of stabilization offered by these inert media.  相似文献   

3.
We report the first rotationally resolved spectroscopic studies on PH3+(X2A2") using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000 cm(-1) above the ground vibrational state of PH3+(X2A2") have been recorded. We observed the vibrational energy level splittings of PH3+(X2A2") due to the tunneling effect in the inversion (symmetric bending) vibration (nu2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8 cm(-1). The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for nu2+ = 0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (nu2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (nu1+) and the degenerate bending vibration (nu4+). The fundamental frequencies for nu1+ and nu4+ are 2461.6 (+/-2) and 1043.9 (+/-2) cm(-1), respectively. The first IE for PH3 was determined as 79670.9 (+/-1) cm(-1).  相似文献   

4.
Cobalt and zinc salts of 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), [C(6)H(2)(COO)(4)H(4)], have been synthesized and investigate by polarized Raman spectroscopy. These compounds present short intramolecular hydrogen bonds (SHB) between adjacent carboxyl groups. Raman spectra indicate the presence of this interaction in both salts. Three specific vibrational of SHB modes have been investigated: O-H-O symmetric [nu(sym)(OHO)] and asymmetric [nu(asym)(OHO)] stretching modes and O-H stretching mode [nu(O-H)], which they were observed around 300, 850 and 2500 cm(-1), respectively. In crystallographic point of view, the cobalt salt presents a symmetric SHB while the zinc salt presents an asymmetric SHB. In cobalt salt all three vibrational modes of O-H-O groups in polarized Raman spectra occur in A(g) orientation although in zinc salts two of them are observed in A(g) orientation and one in B(g). Spectra analysis indicate that nu(sym)(OHO) mode is observed as A(g) to cobalt salt and B(g) to zinc salt. This mode occurs in a crowded spectral region and its identification was made by deconvolution techniques. Comparing spectra of the two salts, it is observed a small difference in relative intensity and wavenumber shift of nu(sym)(OHO) (deviance of 43 cm(-1)) and nu(OH) (deviance of 21 cm(-1)) modes due probably to differences in O...O distance between salts and in orientation of pyromellitate anion in unit cell. The nu(asym)(OHO) mode does not present significant wavenumber shift due difference in SHB. The nu(OH) band presents a great potential for hydrogen bond studies due to the fact that in its vibrational region (around 2500 cm(-1)) it is not observed other vibrational modes of these compounds.  相似文献   

5.
The anharmonic vibrational frequencies of FHF(-) were computed by the vibrational self-consistent-field, configuration-interaction, and second-order perturbation methods with a multiresolution composite potential energy surface generated by the electronic coupled-cluster method with various basis sets. Anharmonic vibrational averaging was performed for the bond length and nuclear magnetic resonance indirect spin-spin coupling constants, where the latter computed by the equation-of-motion coupled-cluster method. The calculations placed the vibrational frequencies at 580 (nu(1)), 1292 (nu(2)), 1313 (nu(3)), 1837 (nu(1) + nu(3)), and 1864 cm(-1) (nu(1) + nu(2)), the zero-point H-F bond length (r(0)) at 1.1539 A, the zero-point one-bond spin-spin coupling constant [(1)J(0)(HF)] at 124 Hz, and the bond dissociation energy (D(0)) at 43.3 kcal/mol. They agreed excellently with the corresponding experimental values: nu(1) = 583 cm(-1), nu(2) = 1286 cm(-1), nu(3) = 1331 cm(-1), nu(1) + nu(3) = 1849 cm(-1), nu(1) + nu(2) = 1858 cm(-1), r(0) = 1.1522 A, (1)J(0)(HF) = 124+/-3 Hz, and D(0) = 44.4+/-1.6 kcal/mol. The vibrationally averaged bond lengths matched closely the experimental values of five excited vibrational states, furnishing a highly dependable basis for correct band assignments. An adiabatic separation of high- (nu(3)) and low-frequency (nu(1)) stretching modes was examined and found to explain semiquantitatively the appearance of a nu(1) progression on nu(3). Our calculations predicted a value of 186 Hz for experimentally inaccessible (2)J(0)(FF).  相似文献   

6.
Five salts of 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), [C6H2(COO)4H4], have been synthesized and investigated by infrared and Raman spectroscopy and by single crystal X-ray diffraction methods: sodium salt [Na2(H2O)2][C6H2(COO)4H2], potassium salt [K(H2O)3][C6H2(COO)4H3] and transition metal salts [M(H2O)6][C6H2(COO)4H2], which M = Mn, Ni and Zn. Crystal structures of all five compounds show short intramolecular asymmetric hydrogen bonds (SHB) between adjacent carboxyl groups with O...O distance average of 2.40 A. The Raman and infrared spectra reported indicate the presence of short hydrogen bonds in all salts, in agreement with the X-ray data. The O-H stretching mode [nu(OH)] had been observed at about 2500 cm(-1). Deuterated analogues were synthesized and their Raman spectra show that nu(OH)/nu(OD) ratio average is about unit. The symmetric [nu(sym)(O..H..O)] and asymmetric [nu(asym)(O..H..O)] stretching modes have been attributed about 300 and 870 cm(-1), respectively, in all salts, and for deuterated analogues, the ratio nu(OH)/nu(OD) to nu(sym)(O..H..O, O..D..O) is close to unit like it occurs in nu(OH). The vibrational modes, mainly SHB modes, are tentatively assigned by molecular orbital ab initio calculations of pyromellitic acid and anions [C6H2(COO)4H3]- and [C6H2(COO)4H2]2-. Geometry optimizations showed a good agreement with experimental data. Frequency calculation confirms the assignment of specific vibrational modes. Ab initio calculations show that nu(C=O) and nu(sym)(COO) are strongly coupled with in plane OH bending [delta(OH)]. In Raman spectra of deuterated analogues is observed a frequency shift of these bands.  相似文献   

7.
Force constants and dipole moment derivatives were calculated for the symmetric stretching and asymmetric stretching and bending vibrational modes for the silane molecule. The orbital exponents of small basis sets of Slater orbitals were optimized for silane in several geometrical configurations. It was determined that the addition of d orbitals to the silicon basis set has negligible effect on the calculated properties.  相似文献   

8.
An extensive HF, MP2, B3LYP and CCSD study of the molecular structure and normal vibrations have been performed for the HCN-BF(3) molecule. Calculations with a wide range of basis sets were classified into two groups based on the optimized N-B bond distance. The results for Group A are compared with the experimental structure of the solid phase molecules. The N-B lengths of Group A are approximately linear related to the N-B-F valence angles and also to the N-B stretching frequencies. HF/DZV calculation was used to represent the solid phase model. The N-B lengths of Group B are close to those of the gas phase molecule and both N-B-F angles and N-B sensitive frequencies have roughly the same values. Differences in the chemical bond between gaseous and solid phase HCN-BF(3) are discussed based on the calculated force constants, vibrational frequencies and potential energy distributions. Vibration mode analysis indicates that the nu(4) mode in the 600-700 cm(-1) region can be assigned to the BF(3) symmetric deformation, which shifts upon (10)B/(11)B isotopic substitution. The nu(5) mode which is insensitive to isotope substitution and changes band position with the N-B distance is assigned to the N-B bond stretching vibration.  相似文献   

9.
Using Gaussian 03 Revision C.02 version of the quantum chemical program ab initio and DFT computations have been carried out at the rhf/6-31+g*, b3lyp/6-31+g*, b3lyp/6-31++g** and b3lyp/6-311++g** levels to compute optimized geometries, harmonic vibrational frequencies along with intensities in IR and Raman spectra and atomic charges for the acetic (ethanoic) acid and its 1,1,1-tri-halo (fluoro, chloro and bromo) derivatives. The optimized molecular structures for all the four molecules are found to possess Cs point group symmetry. The symmetric stretching mode is found to have lowest magnitude of the three CX3 stretching modes for all the four molecules, whereas the symmetric deformation mode is found to have the lowest magnitude for EA and TFEA and the highest magnitude for TCEA and TBEA. The parallel rocking mode of the CX3 group is found to have lower magnitude than the perpendicular rocking mode for EA and TFEA where reverse is found for TCEA and TBEA. The modes of the COOH group are substituent sensitive except the OH stretching mode. Moreover, the maximum effect is found for the TFEA molecule. The CF3 group is found to have the characteristic frequencies as 235-505, 787, 1150-1190 and 1400 cm(-1) which are due to the modes delta s(CF3), nu s(CF3), nu as(CF3) and nu(C-CF3), respectively.  相似文献   

10.
Infrared spectra of the NH stretching vibrations of (NH3)n clusters (n = 2-4) have been obtained using the helium droplet isolation technique and first principles electronic structure anharmonic calculations. The measured spectra exhibit well-resolved bands, which have been assigned to the nu1, nu3, and 2nu4 modes of the ammonia fragments in the clusters. The formation of a hydrogen bond in ammonia dimers leads to an increase of the infrared intensity by about a factor of 4. In the larger clusters the infrared intensity per hydrogen bond is close to that found in dimers and approaches the value in the NH3 crystal. The intensity of the 2nu4 overtone band in the trimer and tetramer increases by a factor of 10 relative to that in the monomer and dimer, and is comparable to the intensity of the nu1 and nu3 fundamental bands in larger clusters. This indicates the onset of the strong anharmonic coupling of the 2nu4 and nu1 modes in larger clusters. The experimental assignments are compared to the ones obtained from first principles electronic structure anharmonic calculations for the dimer and trimer clusters. The anharmonic calculations were performed at the M?ller-Plesset (MP2) level of electronic structure theory and were based on a second-order perturbative evaluation of rovibrational parameters and their effects on the vibrational spectra and average structures. In general, there is excellent (<20 cm(-1)) agreement between the experimentally measured band origins for the N-H stretching frequencies and the calculated anharmonic vibrational frequencies. However, the calculations were found to overestimate the infrared intensities in clusters by about a factor of 4.  相似文献   

11.
We have recorded several rovibronic bands of CH3OO and CD3OO in their A<--X transitions in the range of 1.18-1.40 microm with the cavity ringdown technique. While the electronic origins for these species have been reported previously, many newly observed rovibronic bands are described here. The experimental vibrational frequencies (given as nu in the unit cm(-1) in this paper) for the COO bending (nu8) and COO symmetric stretching (nu7) modes in the A state are 378 and 887 cm(-1) for CH3OO, and 348 and 824 cm(-1) for CD3OO, respectively. In addition, two other vibrational frequencies were observed for the A state of CD3OO, namely, nu5 (954 cm(-1)) and nu6 (971 cm(-1)). These experimental vibrational frequencies for the A state of both CH3OO and CD3OO are in good agreement with predictions from quantum-chemical calculations at the UB3LYP/aug-cc-pVTZ level. The enhanced activity of the nu5 vibrational mode in CD3OO is rationalized by mode mixing with the nu7 mode, as supported by calculations of multidimensional Franck-Condon factors. In addition, many hot bands involving the methyl torsional mode (nu12) are observed for both normal and deuterated methyl peroxy. These bands include the "typical" sequence transitions and some "atypical" ones due to the nature of the eigenvalues and eigenfunctions which are a consequence of the low, but very different, torsional barriers in the X and A states. In addition, the 12(2)2 band in CH3OO and the 12(3)3 band in CD3OO show quite different structures than the origin bands, an effect which results from tunneling splittings comparable to the rotational contour.  相似文献   

12.
The combination of shot noise-limited direct absorption spectroscopy with long-path-length slit supersonic discharges has been used to obtain first high-resolution infrared spectra for jet-cooled CH2F radicals in the symmetric (nu1) and antisymmetric (nu5) CH2 stretching modes. Spectral assignment has yielded refined lower- and upper-state rotational constants and fine-structure parameters from least-squares fits to the sub-Doppler line shapes for individual transitions. The rotational constants provide indications of large amplitude vibrational averaging over a low-barrier double minimum inversion-bending potential. This behavior is confirmed by high-level coupled cluster singles/doubles/triples calculations extrapolated to the complete basis set limit and adiabatically corrected for zero point energy. The calculations predict a nonplanar equilibrium structure (theta approximately 29 degrees, where theta is defined to be 180 degrees minus the angle between the C-F bond and the CH2 plane) with a 132 cm(-1) barrier to planarity and a vibrational bend frequency (nu(bend) approximately 276 cm(-1)), in good agreement with previous microwave estimates (nu(bend) = 300 (30) cm(-1)) by Hirota and co-workers [Y. Endo et al., J. Chem. Phys. 79, 1605 (1983)]. The nearly 2:1 ratio of absorption intensities for the symmetric versus antisymmetric bands is in good agreement with density functional theory calculations, but in sixfold contrast with simple local mode CH2 bond dipole predictions of 1:3. This discrepancy arises from a surprisingly strong dependence of the symmetric stretch intensity on the inversion bend angle and provides further experimental support for a nonplanar equilibrium structure.  相似文献   

13.
The effect of beta-ring rotation on the structures and vibrational spectroscopic characteristics of beta-carotene, including infrared (IR) intensities and Raman activities, is analyzed using density functional theory. Two stable isomers having Ci symmetry are obtained. The reversion of bond lengths is ascribed to the hyperconjugation effect. The natural bond orbital (NBO) charge analysis suggests that the NBO charges of C5 can be used to estimate the degree of pi-electron delocalization. These structural variations are used to analyze and assign the vibrational spectra. It is concluded that (a) the similar rotational angle dependencies of nu1 and nu2 frequencies justify the contribution of C=C stretch vibrations to the nu2 mode and explain the same conjugation length dependencies of nu1 and nu2 frequencies in polyenes, (b) the nu1 mode can be assigned to the C=C stretching in the central part of polyene chain, whereas beta-rings play an important role in nu2 and IR1 bands, especially for the all-trans isomer, and (c) the transition dipole moment of the calculated IR1 absorption band is relevant to the conjugation degree and the crossing angle between the eigenvectors of the polyene chain and the C5=C6 stretching vibration. This theoretical analysis, together with our previous Raman spectral experiments, suggests that the C6-C7 bond is easier to be twisted than other parts of beta-carotene molecule and so provides an insight into the structures of carotenoids and the properties of binding sites in carotenoproteins.  相似文献   

14.
The electronic and infrared spectra of 2-fluoropyridine-methanol clusters were observed in a supersonic free jet. The structure of hydrogen-bonded clusters of 2-fluoropyridine with methanol was studied on the basis of the molecular orbital calculations. The IR spectra of 2-fluoropyridine-(CH3OH)n(n = 1-3) clusters were observed with a fluorescence-detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The structures of the clusters are similar to those observed for 2-fluoropyridine-(H2O)n (n = 1-3) clusters. The existence of weak hydrogen bond interaction through aromatic hydrogen was observed in the IR spectra. The theoretical calculation also supports the result. The vibrational frequencies of CH bonds in CH3 group are affected by hydrogen bond formation although these bonds do not directly relate to the hydrogen bond interaction. The B3LYP/6-311 ++G(d,p) calculations reproduce well the vibrational frequency of the hydrogen-bonded OH stretching vibrations. However, the calculated frequency of CH stretching vibration could not reproduce the IR spectra because of anharmonic interaction with closely lying overtone or combination bands for nu3 and nu9 vibrations. The vibrational shift of nu2 vibration is reproduced well with molecular orbital calculations. The calculation also shows that the frequency shift of nu2 vibration is closely related to the CH bond length at the trans position against the OH bond in hydrogen-bonded methanol.  相似文献   

15.
A new type of hydrogen-bonding interaction in the diborane (B 2H 6)...pi (benzene C 6H 6, 1,3-cyclopentadiene C 5H 6, and cyclobutadiene C 4H 4) system is identified with the natural bond orbital and atoms-in-molecules analyses based on ab initio calculations. In comparison with the symmetric and asymmetric stretching vibrational modes of the bridging hydrogen atoms in free B 2H 6, the frequencies of the symmetric mode are red-shifted for B 2H 6...C 6H 6 and B 2H 6...C 5H 6 but blue-shifted for B 2H 6...C 4H 4. The frequency blue shifts of the asymmetric mode are found for all three complexes; the most significant blue shift is 14.73 cm (-1) for the asymmetric mode in B 2H 6...C 4H 4. In these complexes, the electron-deficient three-center two-electron bond B-H 1-B facing the pi orbital is shortened, while the opposite B-H 2-B bond is elongated.  相似文献   

16.
The carbon 1s photoelectron spectrum of CF4 measured at photon energies from 330 to 1500 eV shows significant contributions from nonsymmetric vibrational modes. These increase linearly as the photon energy increases. The excitation of these modes, which is not predicted in the usual Franck-Condon point of view, arises from the recoil momentum imparted to the carbon atom in the ionization process. A theory is presented for quantitative prediction of the recoil effect; the predictions of this theory are in agreement to the measurements. The experiments also yield the vibrational frequencies of the symmetric and asymmetric stretching modes in core-ionized CF4, the change in CF bond length upon ionization, -0.61 pm, and the Lorentzian linewidth of the carbon 1s hole, 67 meV.  相似文献   

17.
The silico-phosphate mineral perhamite has been studied using a combination of electron and vibrational spectroscopy. SEM photomicrographs reveal that perhamite morphology consists of very thin intergrown platelets that can form a variety of habits. Infrared spectroscopy in the hydroxyl-stretching region shows a number of overlapping bands which are observed in the range 3581-3078 cm(-1). These wavenumbers enable an estimation to be made of the hydrogen bond distances in perhamite: 3.176(0), 2.880(5), 2.779(6), 2.749(3), 2.668(1) and 2.599(7)A. Intense Raman bands are observed in the region 1110-1130 and 966-996 cm(-1) and are assigned to the SiO(4) and PO(4) symmetric stretching modes. Other bands are observed in the range 1005-1096 cm(-1) and are attributed to the nu(3) antisymmetric bending modes of PO(4). Some low intensity bands around 874 cm(-1) were discovered and remain unclassified. Bands in the low-wavenumber region are assigned to the nu(4) and nu(2) out-of-plane bending modes of the OSiO and PO(4) units. Raman spectroscopy is a useful tool in determining the vibrational spectroscopy of mixed hydrated multi-anion minerals such as perhamite. Information on such a mineral would be difficult to obtain by other means.  相似文献   

18.
The splitting of v1 (794 cm(-1)) and v3 (805 cm(-1)) modes in the stretching region of the bromate (C3v) was observed for the first time in dimethyl sulfoxide (DMSO) using vibrational spectroscopy. Depolarization measurements allowed to assign the asymmetric and symmetric modes in solution. The band at 805 cm(-1) that has been attributed to the symmetric stretching mode (A1) corresponds in fact to the asymmetric stretching mode (E) and the band at 794 cm(-1) corresponds to the symmetric stretching mode (A1).  相似文献   

19.
The high-resolution infrared emission spectrum of BeF2 vapor at 1000 degrees C was rotationally analyzed with the assistance of large-scale ab initio calculations using the coupled-cluster method including single and double excitations and perturbative inclusion of triple excitations, in conjunction with correlation-consistent basis sets up to quintuple-zeta quality. The nu3 fundamental band, the nu1+nu2, nu1+nu3, and 2nu2+nu3 combination bands, and 18 hot bands were assigned. The symmetric stretching (nu1), bending (nu2), and antisymmetric stretching (nu3) mode frequencies were determined to be 769.0943(2), 342.6145(3), and 1555.0480(1) cm-1, respectively, from the band origins of the nu3, nu1+nu3, and nu1+nu2 bands. The observed vibrational term values and B rotational constants were fitted simultaneously to an effective Hamiltonian model with Fermi resonance taken into account, and deperturbed equilibrium vibrational and rotational constants were obtained for BeF2. The equilibrium rotational constant (Be) was determined to be 0.235 354(41) cm-1, and the associated equilibrium bond distance (re) is 1.3730(1) A. The results of our ab initio calculations are in remarkably good agreement with those of our experiment, and the calculated value was 1.374 A for the equilibrium bond distance (re). As in the isoelectronic CO2 molecule, the Fermi resonance in BeF2 is very strong, and the interaction constant k122 was found to be 90.20(4) cm-1.  相似文献   

20.
Fourier transform infrared spectra of MnO4- anions isomorphously isolated in potassium perchlorate matrices were recorded at room and low temperature (LT, approximately 100 K). On the basis of the detected second-order vibrational transitions involving the dopant species nu3 mode components, anharmonicity constants and harmonic eigenvalues for these modes were calculated. Despite the fact that, rigorously speaking, the appearance of the spectra of dopant permanganate anions may be explained in terms of a Cs site symmetry, the nu3 stretching region resembles an approximate A1+E splitting (characteristic for a local C3nu or even higher symmetry), which is not expected, even within the latent symmetry approach. We explain such spectral patterns on the basis of vibrational mode mixing (a 'Fermi-like' resonance) of the MnO4- nu1 mode with the nu3, site-group component. With the results of degenerate case stationary perturbation theory, we show that in the present case the Fermi-like resonance is predominantly responsible for the observed spectral features. The appearance of the region of second-order vibrational transitions in the spectra of dopant permanganate anions may be better explained in terms of the (rigorous) crystallographic Cs site group (corresponding to the crystallographic Pnma space group), instead of the 'latent' (effective) symmetry site group C2nu (corresponding to the latent symmetry space group Imma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号