首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Using the ab initio Hartree-Fock crystal orbital method in its linear combination of atomic orbitals form we have calculated the band structures of poly(-) and poly(-). Here, besides the nucleotide bases, the sugar and phosphate parts of the nucleotide were also taken into account together with their first water shell and Na+ ions. We use the notation with a tilde above the abbreviation of a base for the whole nucleotide; for instance poly() means a guanine base with the deoxyribose and PO4 groups to which it is bound. The obtained band structures were compared with previous single chain calculations as well as with the earlier poly(-) and poly(-) calculation without water but in the presence of counterions. One finds that all the bands of poly(-) and poly(-) are shifted considerably upwards as compared to the previous single chain results (poly(), poly(), poly() and poly()). This effect is explained by the ∼0.2e charge transfer from the sugars of both chains to the nucleotide bases. The fundamental gaps between the nucleotide base-type highest filled and lowest unfilled bands are decreased in both cases by 1-3 eV, because the valence bands are purine-type and the conduction bands pyrimidine-type, respectively, while in the case of single homopolynucleotides they belong to the same base. We also pointed out that the LUMO is mainly Na+-like in both investigated cases and several unoccupied bands (belonging to the Na+ ions, the phosphate group and the water molecules) can be found between this and the first unoccupied pyrimidine-like empty band.  相似文献   

2.
3.
4.
nanostructures were synthesized by using different Bi sources via a simple solvothermal process, in which and BiCl3 were used as the Bi sources. Optical properties of nanostructures prepared with and BiCl3 as the Bi sources were investigated by micro-Raman spectroscopy. The Raman scattering spectrum of hexagonal nanoplates prepared by using as the Bi source shows that the infrared (IR) active mode A1u, which must be odd parity and is Raman forbidden for bulk crystal due to its inversion symmetry, is greatly activated and shows up clearly in the Raman scattering spectrum. We attribute the appearance of the infrared active A1u mode in the Raman spectrum to crystal symmetry breaking of hexagonal nanoplates. However, the Raman scattering spectrum of nanostructures with irregular shape prepared by using as the Bi source only exhibits the two characteristic Raman modes of crystals. Micro-Raman measurements on nanostructures with different morphologies offer us a potential way to tailor optical properties of nanostructures by controlling the morphologies of the nanostructures, which is very important for practical applications of nanostructures in thermoelectric devices.  相似文献   

5.
The magnetoelastic instability in nanostructured ring-shaped Ising-like spin 1/2 model has been investigated by using the exact diagonalization method. It is found that there exists two critical anisotropy parameters and () in the phase diagram. As the anisotropy parameter , the magnetoelastic transition from dimerized phase to uniform phase is a first order transition with an increase of the lattice spring constant. While for , the transition is continuous. Another critical value divides the different lattice distortion behavior as the anisotropy is strengthened.  相似文献   

6.
Measurements of near-infrared water vapour continuum using continuous wave cavity ring down spectroscopy (cw-CRDS) have been performed at around 10611.6 and . The continuum absorption coefficients for N2-broadening have been determined to be and at , and and at , respectively.These results represent the first near-IR continuum laboratory data determined within the complex spectral environment in the 940 nm water vapour band and are in reasonable agreement with simulations using the semiempirical CKD formulation.  相似文献   

7.
Laser-induced fluorescence excitation spectra of MeRg (Me = Zn, Cd; Rg = He, Ne, Ar, Kr, Xe) complexes were recorded using the D1 ← X1 free ← bound transition. The complexes were produced in their ground state in a free-jet expansion beam and excited with a dye-laser beam directly to the excited state. Analysis of free ← bound unstructured profiles provided a shape of the repulsive part of the D1-state potentials. Valence ab initio calculations of the ZnRg and CdRg ground- and excited-state potentials and electronic transition dipole moments for the studied transition were performed, taking scalar relativistic and spin-orbit effects into account. Results of the calculations show regularities and correlations in the repulsive branches and bound wells of the X1- and D1-state potentials as well as provide information on the bonding character in both electronic energy states. The trends were compared with available experimental results for ZnRg and CdRg as well as for MgRg and HgRg.  相似文献   

8.
The gas phase absorption spectrum of oxalyl fluoride in the region of 37 000–29 300 cm−1 has been examined at high resolution. Singlet–singlet and singlet–triplet electronic transitions of the trans-conformer were found in the spectrum. The fundamental frequencies of trans-oxalyl fluoride in the and electronic states were determined.In the low resolution ultraviolet absorption spectrum of oxalyl fluoride in the gas phase the transition of the cis-conformer (νmax) was found to be shifted to the blue by about 6000 cm−1 relative to the transition of the trans-conformer.  相似文献   

9.
The absorption spectra of jet-cooled AsH2 radicals were recorded in the wavelength range of 435-510 nm by cavity ringdown spectroscopy. The AsH2 radicals were produced by pulsed DC discharge in a molecular beam of a mixture of AsH3, SF6, and argon. Seven vibronic bands with fine rotational structures have been identified and assigned as the , , and (n = 1-3) bands of the electronic transition. Based on the previous studies of AsH2 radical, rotational assignments and rotational term values for each band were obtained, and the molecular parameters including vibrational constants, rotational constants, centrifugal distortion constants, and spin-rotation interaction constants were also determined.  相似文献   

10.
Various iron-silicides are grown on clean Si(0 0 1) surfaces by solid phase epitaxy, a process which involves the deposition of iron and subsequent annealing [6]. Among them, we studied the structure of three-dimensional (3D) elongated islands, which are the major silicide type produced at lower Fe coverage (∼1 monolayer) and ?500-600 °C annealing. We applied a newly developed method of azimuth-scan reflection high-energy electron diffraction (RHEED) to obtain 3D reciprocal-lattice mapping. We succeeded in discriminating an α-FeSi2 phase from controversial bulk phases of the islands, and we were also able to determine the orientation relation as and , where the lattice mismatches are −1% in direction and +34% in direction. The attenuation of the incident electron beam along the length direction of the islands leads to extremely weak spots in the RHEED pattern. We emphasize that such an analysis of the reciprocal-lattice mapping is also useful in studying other 3D island structures. Using scanning tunneling microscopy, we showed that the island’s elongated directions are perpendicular to the dimer rows of the substrate located under the islands. The islands are located near the SB step edges. The elongation lengths of the islands are almost the same as the widths of the Si substrate terraces. We discussed the formation mechanism of the 3D-elongated islands. From an atomic image of the facet and edge of a 3D-elongated island, we proposed an atomic-structure model of the island facet and edge: a Si adatom on the hollow site of four Si atoms of an unit, with ordering in the direction of the elongation, forming an facet locally.  相似文献   

11.
Inelastic neutrino scattering cross sections for the even-even Mo isotopes (contents of the MOON detector at Japan), at low and intermediate electron neutrino energies (?i≤100 MeV), are calculated. MOON is a next-generation double beta and neutrino-less double-beta-decay experiment which is also a promising facility for low-energy neutrino detection. The nuclear wave functions required in this work have been constructed in the context of the quasi-particle random phase approximation (QRPA) and the results presented refer to , , , and isotopes.  相似文献   

12.
One-dimensional defect structures of closed-packed adlayers of iodine on Pt(1 0 0) were studied with scanning tunneling microscopy (STM). On the terraces of the Pt(1 0 0) surface we observed rotational domains with line defects running in [0 1 0] directions, in coexistence with nearly defect-free domains. In addition to these prevailing line defects (A-defects) with a local coverage lower than that of a defect-free surface, we report on much less frequently observed line defects with higher local coverages (B- and C-defects). The strong dependence of the concentration of these defects on the adsorption temperature is governed by the decrease of the overall iodine coverage with increasing temperature. Iodine adsorption at ∼1100 K leads to self-organization of A-defects in quasi-periodic arrangements. The relevance of these defects as important structural elements of commensurate superstructures of iodine on Pt(1 0 0) is stressed.  相似文献   

13.
The thickness-dependent electronic structures of Dy silicide films grown on a Si(1 1 1) surface have been investigated by angle-resolved photoelectron spectroscopy. Two (1×1) periodic bands, both of them cross the Fermi level, have been observed in the silicide films formed by Dy coverages of 1.0 monolayer and below, and more than five () periodic bands have been observed in thicker films. Taking the () periodic structure of Dy atoms in the submonolayer silicide film into account, the periodicity of the two metallic bands indicate that they mainly originate from the orbitals of Si atoms, which form a (1×1) structure. Of the () periodic bands observed in thick films, four of them are well explained by the folding of the (1×1) bands into a () periodicity. Regarding the other band, the three () periodic bands would originate from the electronic states related to the inner Si layers that form a () structure, and the one observed in the 3.0 ML film only might originate from the electron located at the interface between bulk Si and the Dy silicide film.  相似文献   

14.
A tunable diode laser spectrometer has been employed to examine the unknown overtone absorption lines of NH3 around (760 nm). The spectrometer sources are commercially available heterostructure AlGaAs tunable diode lasers operating in the “free-running” mode. The detection of the lines has been possible by the use of the wavelength modulation spectroscopy and the second harmonic detection technique. A special algorithm has been used in order to fit the highly modulated absorption lines. The weakest observed resonances have absorption cross sections on the order of ?/molecule or ?/amagat. For some of the more intense lines self-, air-, N2-, He- and H2-broadening coefficients have been obtained at room temperature and also some shifting coefficients have been measured.  相似文献   

15.
A class of highly fluorescent and stable carbazole end-capped phenylene ethynylene compounds have been synthesized and characterized. They show high extinction coefficients of absorption () and quantum yields of fluorescence (; ΦF=0.52-0.73) in dichloromethane. The solid state absorptions and emissions are significantly red-shifted from the dilute solution ones (; ). Their photoluminescent properties and crystal structures have been investigated with the aim of providing a basis for elucidating the structure-physical property relationships. These data indicate their potential use as blue-emitting materials in organic light-emitting diodes (OLEDs).  相似文献   

16.
The oxidation of aniline at Cu(1 1 0) surfaces at 290 K has been studied by XPS and STM. A single chemisorbed product, assigned to a phenyl imide (C6H5N(a)), is formed together with water which desorbs. Reaction with preadsorbed oxygen results in a maximum surface concentration of phenyl imide of 2.8 × 1014 mol cm−2 and a surface dominated by domains of three structures described by , and unit meshes. However, concentrations of phenyl imide of up to 3.3 × 1014 mol cm−2 were obtained from the coadsorption of aniline and dioxygen (300:1 mixture) resulting in a highly ordered biphasic structure with and domains. Comparison of the STM and XPS data shows that only half the phenyl imides at the surface are imaged. Pi-stacking of the phenyl rings is proposed to account for this observation.  相似文献   

17.
The Kondo insulator Y bB12 is known to undergo a transition to the metallic state with doping or under an external magnetic field. Within the virtual crystal approximation (VCA), we calculated the occupation of the Yb 4f and 5d shells, and , as a function of doping of Y bB12 with the rare earths Tm and Lu. We found that exhibits an anomalous change at the critical concentration of the dopant, in agreement with experiment ( for Y b1−xLuxB12 and for Y b1−xTmxB12). We suggest that the critical behaviour seems to be strictly connected with the change of and in consequence the change of the Yb valency.  相似文献   

18.
Formation of muonic molecules and , where J is rotational quantum number, in electron conversion process is investigated at collision energies between 0.004 eV and 50 eV. Corresponding reaction rates are calculated in adiabatic approximation for the three-body Coulomb problem. Significant enhancement of the rates for and is found near 7 eV and 30 eV, respectively. It is shown that the enhancement is due to resonances present in elastic and scattering at these energies. Acceleration of atoms up to the resonant energy could be realized in triple H-D-3He mixture due to the muon transfer from protium to deuterium. Experimental investigation of nuclear synthesis from molecular state directly formed in the mixture is suggested.  相似文献   

19.
The recent observation at the Tevatron of (uub and ddb) baryons within 2 MeV of the predicted Σb-Λb splitting and of baryons at the Tevatron within a few mega electron volts (MeV) of predictions has provided strong confirmation for a theoretical approach based on modeling the color hyperfine interaction. The prediction of  = 5790-5800 MeV is reviewed and similar methods used to predict the masses of the excited states and . The main source of uncertainty is the method used to estimate the mass difference mb-mc from known hadrons. We verify that corrections due to the details of the interquark potential and to Ξb- mixing are small. For S-wave qqb states we predict , and . For states with one unit of orbital angular momentum between the b quark and the two light quarks we predict , and . Results are compared with those of other recent approaches.  相似文献   

20.
We have studied the influence of CO on the adsorption of benzene on the Co(0 0 0 1) surface using LEED, XPS, TDS and work function measurements. CO was found to reduce the benzene adsorption, but even at saturation CO exposure no complete blocking was observed. Thermal desorption of the coadsorbed layer featured CO and H2 peaks indicating partial dehydrogenation of benzene and retaining of the CO bond. Ordered LEED structures were found with all coverages: Pre-adsorption of CO led to patterns already seen for pure carbon monoxide adsorption. Pre-adsorption of benzene showed the known structure of pure benzene also with small CO exposures, but higher CO exposures yielded a mixture of and patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号