首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 60 毫秒
1.
纤维复合材料(FRP)加固混凝土梁跨中可能发生剥离破坏,研究者已提出几种计算FRP-混凝土粘结界面剪应力τ的方法,但所得结果有较大的差异.本文先通过典型的FRP-混凝土界面的粘结-滑移本构关系和FRP加固梁实验结果,评估既有计算方法存在的问题.进而提出一个简单的"梁段"有限元计算模型,并证实其合理性和可靠性.再用此模型计算讨论了多种参数影响下的FRP-混凝土界面剪应力τ分布特征.基于实验研究和有限元计算结果,指出FRP-混凝土界面剪应力最大值τu不适合作为剥离破坏准则,并建议考虑将滑移量最大值δ作为FRP-混凝土界面的剥离破坏准则.  相似文献   

2.
FRP-混凝土界面粘结行为的参数影响研究   总被引:3,自引:0,他引:3       下载免费PDF全文
彭晖  高勇  谢超  崔潮  张克波 《实验力学》2014,29(4):489-498
FRP-混凝土界面的粘结性能对FRP加固混凝土结构力学行为和破坏模式有着重要影响。本文对表征FRP-混凝土界面粘结性能的三个重要参数(界面初始刚度、最大剪应力、界面破坏能)开展研究,通过13个单剪试件的试验考察了混凝土强度、胶层厚度和粘结长度等因素对界面粘结行为的影响,根据试验结果拟合了界面破坏能、最大剪切应力与胶层剪切刚度、混凝土强度之间的函数关系。在试验研究基础上,构建了外贴FRP-混凝土界面粘结的有限元模型。通过有限元分析考察了界面破坏能等三个参数不变的前提下,不同的局部粘结滑移本构关系对界面粘结行为的影响;进而研究了其中一个参数变化时引起的界面粘结性能改变。研究结果表明:界面粘结承载力随着胶层厚度增加而逐渐提高;胶层厚度与界面破坏能成正比,与峰值剪应力成反比;当界面破坏能等三个参数保持不变时,局部粘结滑移本构关系对FRP-混凝土界面粘结性能的影响较小;三个参数中的一个增大时将延缓界面破坏的过程。  相似文献   

3.
CFRP阶梯加固可以有效减小CFRP端部胶层应力,防止胶层过早剥离而导致CFRP加固失效.文中通过理论推导建立CFRP阶梯加固钢板的端部胶层剪应力和正应力的理论模型,并采用有限元模型验证了理论模型,然后利用理论模型研究了加固参数对胶层应力的影响.研究结果表明:理论模型可以有效地计算端部胶层应力,且当阶梯端部长度超过“最小端部长度”时,理论模型可以准确计算端部胶层的最大应力值及其发生位置;利用理论模型便于分析各种参数对端部胶层应力的影响,其中胶层厚度、阶梯数量和CFRP厚度对端部胶层应力影响较大.  相似文献   

4.
利用电沉积技术对碳纤维增强混凝土(CFRC)的裂纹实施钝化。在分析CFRC实施裂纹钝化后的弯曲强度分布状况的基础上,采用Weibull模数m值和特征强度σ的大小来评价该材料裂纹钝化后的性能。结果表明Weibull统计理论适宜解释电沉积技术的作用机理,CFRC在裂纹钝化后其强度提高了,离散性也得到了显著的改善。  相似文献   

5.
纤维布抗弯加固梁跨中剥离应力的近似计算   总被引:2,自引:0,他引:2  
首先综述了纤维复合材料(FRP)抗弯加固梁中防剥离破坏的各种措施,分析了跨中混凝土保护层的剥离破坏机理,提出一个近似计算跨中保护层剥离应力上限的方法,可供防剥离设计参考。  相似文献   

6.
彭晖  王博  张建仁  李树霖 《实验力学》2014,29(2):189-199
外贴FRP是重要的混凝土结构加固技术,但目前对外贴FRP加固混凝土结构的疲劳性能研究尚不充分,尤其对FRP-混凝土粘结界面的疲劳退化规律和破坏模式的研究更为缺乏。本文采用双面剪切试件,通过2个静载试件和4个疲劳试件的试验研究,考察了粘结长度和胶层厚度等因素对FRP-混凝土界面粘结疲劳性能的影响。通过分析沿粘结长度的FRP应变分布在疲劳循环过程中和疲劳后静载过程中的变化情况,讨论了不同粘结长度和粘结胶层厚度条件下的粘结界面疲劳退化规律和疲劳后静载性能。试验结果表明:胶层树脂-混凝土粘结界面是发生疲劳剥离破坏的薄弱环节;胶层厚度增大时,由于疲劳引起的界面损伤累积发展显著减小,疲劳后静载中胶层厚度较大试件的粘结承载力也更大;粘结长度增大时,界面粘结呈现更为明显的损伤退化,但由于试验粘结长度小于有效粘结长度,疲劳后的静粘结承载力仍更大。  相似文献   

7.
在栓-盘摩擦磨损试验机上考察了干摩擦条件下偶件表面粗糙度对碳纤维增强尼龙(PA1010)复合材料摩擦学性能的影响,采用不迩显微镜观察分析了偶件表面转移膜的形貌。结果表明,碳纤维能够明显提高PA1010的耐磨性能,当碳纤维增强相的质量分数为10%和20%时,增强PA1010复合材料的磨损率比非增强PA1010的降低3~6倍。这是由于碳纤维起到了承载作用并具有较强的抗犁削能力所致,磨损表面形貌光学显微分析表明:磨损前后偶件表面形貌发生了明显的变化;当偶件表面粗糙度Ra处于0.11~0.13um范围内时,复合材料的摩损率最低;随Ra值的增大或减小微切削和转移膜疲劳脱落加剧致使复合材料的磨损率快速增大。  相似文献   

8.
纤维增强复合材料板抗碎片模拟弹性能评定方法   总被引:1,自引:0,他引:1  
曲英章  羡梦梅 《实验力学》1998,13(2):133-138
提出了两种纤维增强复合材料板抗碎片模拟弹性能的评定方法,并创立了两种测量贯穿纤维增强复合材料板弹丸的剩余速度的方法-铝箔法和光幕靶法。  相似文献   

9.
纤维增强混凝土材料的界面剪应力分布研究   总被引:1,自引:0,他引:1  
针对纤维与混凝土界面的破坏过程,提出了几种简化的粘结-滑移本构模型,以双线性局部粘结-滑移本构模型为基础,在受力平衡和变形协调的基本原理基础上,推导了纤维脱粘过程中界面剪应力的解析解.采用弹簧粘结单元,通过数值方法模拟了纤维与混凝土之间的粘结-滑移过程,给出了纤维与混凝土界面脱粘过程中界面剪应力的分布、变化情况.对解析解、有限元计算结果和试验结果之间的差异进行了对比分析,验证了简化模型的合理性和有效性.  相似文献   

10.
基于形状记忆合金Brinson一维热力学本构关系和vonK'{a}rm'{a}n几何非线性薄板理论,研究了径向嵌入SMA丝复合材料加热圆板在横向均布机械载荷作用下的弯曲响应,获得了周边不可移简支和夹紧圆板的中心最大挠度与升温之间的关系曲线. 结果表明,形状记忆合金丝在从马氏体向奥氏体的逆相变过程中所产生的相变回复力对板的弯曲变形具有明显的调整作用. 通过嵌入SMA纤维丝和施加升温载荷可以主动而有效地调节受机械载荷作用圆板的弯曲变形.  相似文献   

11.
A characteristic feature of concrete under uniaxial compression is the development of cracks parallel to the loading direction. A damage constitutive model proposed by Ortiz [Ortiz, M., 1985. A constitutive theory for the inelastic behaviour of concrete. Mech. Mater. 4, 67–93] can predict the transverse tensile stress responsible for these cracks by considering the interaction between the aggregate and the mortar and the development of damage in the latter. When concrete is exposed to high temperature, as is the case during fire, the failure mode is thermal spalling. In order to improve the prediction of the stresses involved in this failure Ortiz’s model is extended to account for the effects of high temperature. Published experimental results for uniaxial and biaxial compression at high temperatures are used to calibrate the temperature dependence of some of the material properties. The transient creep strain is accounted for by modifying the constrained thermal strain. The stress analysis is coupled with hygro-thermal analysis of heat, mass transfer and pore pressure build-up. The effect of pore pressure on the damage evolution is modeled by applying a body force in the stress analysis module proportional to the pressure gradient. A numerical example of concrete under fire is solved and the computed results are discussed. Spalling is predicted when the damage variable reaches its maximum value of unity. The predicted depth and time of spalling for a range of variation of permeability and initial liquid water content are presented. They are in good agreement with published experimental results.  相似文献   

12.
A work-of-fracture method using three-point bend beam (3PBB) specimen, commonly employed to determine the fracture energy of concrete, is adapted to evaluate the mode-I cohesive fracture of fiber reinforced plastic (FRP) composite–concrete adhesively bonded interfaces. In this study, a bilinear damage cohesive zone model (CZM) is used to simulate cohesive fracture of FRP–concrete bonded interfaces. The interface cohesive process damage model is proposed to simulate the adhesive–concrete interface debonding; while a tensile plastic damage model is used to account for the cohesive cracking of concrete near the bond line. The influences of the important interface parameters, such as the interface cohesive strength, concrete tensile strength, critical interface energy, and concrete fracture energy, on the interface failure modes and load-carrying capacity are discussed in detail through a numerical finite element parametric study. The results of numerical simulations indicate that there is a transition of the failure modes controlling the interface fracture process. Three failure modes in the mode-I fracture of FRP–concrete interface bond are identified: (1) complete adhesive–concrete interface debonding (a weak bond), (2) complete concrete cohesive cracking near the bond line (a strong bond), and (3) a combined failure of interface debonding and concrete cohesive cracking. With the change of interface parameters, the transition of failure modes from interface debonding to concrete cohesive cracking is captured, and such a transition cannot be revealed by using a conventional fracture mechanics-based approach, in which only an energy criterion for fracture is employed. The proposed cohesive damage models for the interface and concrete combined with the numerical finite element simulation can be used to analyze the interface fracture process, predict the load-carrying capacity and ductility, and optimize the interface design, and they can further shed new light on the interface failure modes and transition mechanism which emulate the practical application.  相似文献   

13.
This paper focuses on the analytical and numerical modeling of the interface between a rigid substrate with simple constant curvature and a thin bonded plate. The interfacial behavior is modeled by independent cohesive laws in the normal and tangential directions, coupled with a mixed-mode fracture criterion. The newly developed analytical model determines the interfacial shear and normal stress distributions as functions of the substrate curvature, during the various behavioral stages of the interface prior to the initiation of debonding. The model is also able to predict the debonding load and the effective bond length. In the numerical model the interface is modeled by zero-thickness node-to-segment contact elements, in which both the geometrical relationships between the nodes of the discretized problem and the interface constitutive laws are suitably defined. Numerical results and comparisons between the predictions of the two models are presented.  相似文献   

14.
The differential volume changes between repair material and substrate concrete induces stresses in concrete overlays. These stresses could cause the repair material cracking or the interface delamination, which facilitate the penetration of harmful substances into concrete and hence accelerate the deterioration of concrete overlays. In order to investigate the characteristics of these stresses, an analytical model has been developed based on the plate theory and the assumption of the linear relation between shear stress and slip at the interface. This model is able to calculate the tensile stress in the repair material, shear and normal stresses at the interface and the corresponding strains. With this model, the influence of the interface shear stiffness, the dimension of the concrete overlay, and the elastic moduli of two materials on stresses and strains was studied.  相似文献   

15.
为分析塑性铰区碳纤维约束高强混凝土圆柱的抗震性能,编制了可得到荷载-位移曲线软化段的非线性全过程分析程序,保护层和箍筋约束混凝土采用Mander本构模型,碳纤维约束混凝土采用ACI 440.2R-08给出的本构关系,将程序计算结果与试验结果进行比较,两者吻合较好;利用该程序分析了轴压比、混凝土强度、碳纤维包裹长度及层数、纵筋配筋率等参数对碳纤维约束混凝土圆柱荷载-位移关系的影响规律,结果表明:当轴压比超过0.55后,柱构件的水平承载力开始降低,柱的破坏形式由延性的受拉破坏向脆性的受压破坏转变;剪跨比大于3的圆柱,碳纤维在塑性铰区包裹长度大干1.2倍柱直径时,即可达到与全柱包裹基本一致的效果;对混凝土强度为50 MPa~80 MPa的高强混凝土圆柱,以包裹3~4层碳纤维为宜;随着纵筋配筋率的增加,柱的水平极限承载力及延性均有所提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号