首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When (t-Bu)2PCH2CHCH2CH2 is combined with [IrCl(C8H14)2]2 in toluene, the σ-bound cyclopropane complexes
(P(t-Bu)2CH2CHCH2CH2) (1a, 1b) are formed. Complexes 1a,1b react readily with H2 to form IrClH2P(t-Bu)2CH2CHCH2CH2)2 (2). In polar solvents 1a,1b isomerize to the σ-vinyl chelated complex IrClH(P(t-Bu)2CH2C(CH3)CH)(P(t-Bu)2CH2CHCH2CH2) (3). The structure of this 5-coordinate, 16-electron IrIII complex was deduced from spectroscopic data, reaction chemistry, and from the crystal structure of its CO adduct (4). Compound 4 crystallizes in the monoclinic space group C2h5-P21/n (a 15.610(14), b 15.763(16), c 11.973(13) Å, and β 104.74(5)°) with 4 molecules per unit cell. The final agreement indices for 2326 reflections having Fo2 > 3σ(Fo2) are R(F) = 0.089 and Rw(F) = 0.095 (271 variables) while R(F2) is 0.148 for the 3423 unique data. Bond lengths in the 5-atom chelate ring IrPCCC are IrP 2.341(4), PC 1.857(26), CC 1.520(30), CC 1.341(25), and CIr 1.994(21) Å. The IrCl distance is 2.479(5) Å.  相似文献   

2.
The addition of trimethylphosphane to five-membered metallacyclic vinylketone complexes of the type ArM(CO)2(HCCHCOR) (I) (Ar = η5-aromatic ring system: C5H5, C5H4Me, C5Me5; R = Me, Et, n-Bu; M = Mo, W) in pentane solution results in the formation of the ylidic metallacyclopropane complexes ArM(CO)2[(PMe3)-HCCH(COR)] (II). In these 1:1 adducts the three-membered ring is stabilized by an electron-donating phosphonium and an electron-attracting acyl substituent. The negative charge in the ylidic complexes II is localized on the central metal providing it with Lewis base properties. An extraordinary high electron density can be observed on the metal of the derivative C5H5W(CO)(PMe3)[(PMe3)HCCH-(COMe)] (III) which is formed by a 1:2 addition of C5H5W(CO)(C2H2)-(COMe) and PMe3. The metallacyclopropane complexes II and III are characterized by IR, 1H NMR, 13C NMR, 31P NMR and mass spectroscopy. For C5H5W(CO)2[(PMe3)HCCH(COMe)], the results of an X-ray structure determination are presented.  相似文献   

3.
Treatment of [{Ir(COD)(μ-Cl)}2] with excess of the electron-rich olefin [CN(Ar)(CH2)2NAr]2 (abbreviated as (LAr)2, Ar = C6H4Me-p or C6H4OMe-p) affords the ortho-metallated tricycle [Ir(LAr)3], which for Ar = C6H4Me-p (Ia) with HCL yields [Ir(LAr)2(LAr)]Cl (IV); X-ray data show that in IV there is an unexpectedly close Ir?C(o-aryl) contact (2;52(1) Å) involving the “free” LAr which compares with an IrC(o-aryl) distance of 2.09(3) Å in Ia or 2.07(3) Å in the ortho-metallated LAr ligand of complex IV.  相似文献   

4.
The displacement of tetrahydrofuran (THF) from W(CO)5(THF) with hexaphenylcarbodiphosphorane yields a compound with a carbon-metal bond (CO)5W C[P(C6H5)3]2. The in situ photolysis of tungsten hexacarbonyl and hexaphenylcarbodiphosphorane, however, yields a product (CO)5W?CC +P(C6H5)3. Ethylenebis(triphenylphosphine)platinum and hexaphenylcarbodiphosphorane in benzene yield a platinum containing heterocycle [(C6H5)3P]2PtC[ P(C6H5)3]P-(C6H5)3.  相似文献   

5.
The amine substituted phosphines (C6H5)2PN(H)CH2CH3 and (C6H5)2PN(H)CH2C6H5 react with C5H5Fe(CO)2CH(C6H5) (OCH3) photolytically to give moderate yields of the four-membered chelate ring complexes C5H5Fe (CO) [(C6H5)2PN (CH2CH3) CH (C6H5)] and C5H5Fe (CO) [(C6H5)2 PN (CH2C6H5)CH(C6H5)], respectively. Photolysis of C5H5Fe(CO)2CH(C6H5) (OCH3) in the presence of (S)-(?)-diphenyl(1-phenylethylamino)phosphine leads to the isolation of C5H5Fe(CO)[(C6H5)2PNC(CH3) (C6H5)]CH2C6H5 which is proposed to arise from a formally 1,3-hydrogen shift rearrangement of an intermediate four-membered chelate ring complex.  相似文献   

6.
CpFe(CO)2CH3 reacts with Cp2NbH made from Cp2NbBH4 and Et3N to give Cp2NbH(μ-C5H4)Fe (III). As shown by X-ray diffraction, III contains the Cp2NbH sandwich fragment with a 46.8° angle between the rings linked with the dicarbonyliron moiety by the NbFe bond (2.968 Å), observed for the first time, and a cyclopentadienyl bridge C5H4, involving the NbC. σ-bond (2.189 Å) and C5H4Fe π-bond (2.085 Å). A probable reaction scheme leading to III and general patterns of formation of other heterobinuclear derivatives of sandwich complexes Cp2MLM′(L′)n are discussed. The importance of steric effects due to nonbonded interligand interactions between the M′(L′)n fragment and the sandwich system is emphasized. Increase of steric strain in the binuclear system facilitates its unusual transformations.  相似文献   

7.
The interaction of azobenzene and MnR(CO)5 (R  Me, Et, CH2Ph, CH2-C6Me5, COCF3, COCH2C6F5, COCH2OPh, Ph or C6F5) affords Mn(C6H4NNPh)-(CO)4, together with a binuclear complex Mn2(CO)6(C12H10N2) in some cases. The metallation reaction is shown to proceed most readily with Mn-(CH2Ph)(CO)5; with this reagent, the metallated complexes Mn(C6H4CH2PMe2)-(CO)3[PMe2(CH2Ph)] (two isomers) and Mn(C6H4CH2AsMe2(CO)4 have been obtained on treatment with EMe2(CH2Ph) (E  P and As, respectively).  相似文献   

8.
The η-hexamethylbenzenehydridoruthenium(II) complexes RuHCl(η-C6Me6)L (L = PPh3 (11), AsPh3 (12), P(C6H4-p-F)3 (14), P(C6H4-p-Me)3 (15), P(C6H4-p-OMe)3 (16), P-t-BuPh2 (17), P-i-PrPh2 (18), P-i-Pr3 (19), PCy3 (20) and P-t-BuMe2 (21)) have been made by heating [RuCl2(η-C6Me6)]2, the ligand and sodium carbonate in propan-2-ol. The triarylphosphine complexes 11, 14 and 15 react with methyllithium to give aryl ortho-metallated hydridoruthenium(II) complexes such as RuH(o-C6H4PPh2)(η-C6Me6) (22) and 19 similarly gives the isopropyl cyclometallated complex RuH(CH2CHMeP-i-Pr2(η-C6Me6) (29) as a mixture of diastereomers. Reaction of 17 with methyllithium gives initially the t-butyl cyclometallated complex RuH(CH2CMe2PPh2)(η-C6Me6) (25) which isomerizes by a first order process (k0?.2 h?1 in C6D6 or THF-d8 at 50°C) to the aryl ortho-metallated complex RuH(o-C6H4P-t-BuPh)(η-C6Me6) (26). The similarly generated isopropyl cyclometallated complex RuH(CH2CHMePPh2)(η-C6Me6) (27) has not been isolated in a pure state owing to rapid isomerization to RuH(o-C6H4P-i-PrPh)(η-C6Me6) (28); both 27 and 28 exist as a pair of diastereomers. The formation of the cyclometallated complexes and the isomerizations are thought to involve intermediate 16-electron ruthenium(O) complexes Ru(η-C6Me6)L.  相似文献   

9.
10.
The electrochemical fluorination of chlorine-containing alkylamines has been studied. It was found that, in general, the carbon-chlorine bond in the alkylamines is retained during electrochemical fluorination is anhydrous hydrogen fluoride, yielding chlorine-containing polyfluoroalkylamines. Perfluoroalkylamines and fluorocarbons were also produced.By the use of this method, several new chloropolyfluoroamines such as (CF3)2NCF2CClF2, (C2F5)2NCF2CClF2, (CF3)(C2F5)NCF2CClF2, (CClF2CF2)2NCF3, (CClF2CF2)2NC2F5, (C2F5)(CClF2CF2)NF, (CClF2CF2)2NF, (CF3)2NCF2CF2CClF2, CF2(CF2)3NCF2CClF2, and CF2CF2OC2F4NCF2CClF2 have been isolated and characterized.  相似文献   

11.
Mechanistic and synthetic highlights of out studies during the past twenty years on azides derived from fluorocarbon systems {alkenes (e.g. CF3CFCFN3), aza-alkenes and -cycloalkenes [e.g.CF2(CF2)2C(CF3)NC(CF3)N3], arenes (e.g. C6F5N3), and heteroarenes(e.g. 4-N3.C5F4N)} will be discussed with emphasis on recent results bearing on the synthesis of novel seven-membered N-heterocycles.  相似文献   

12.
13.
The platinacyclopentane derivative [Cl(CH2)3R2P](Cl)PtPR2CH2CH2CH2 is formed by action of Cl(CH2)3PR2 on Pt(COD)2 in n-hexane via the not isolable Pt[PR2(CH2)3Cl]2 (R  C6H11) by oxidative addition of a CCl bond to platinum. [μ-CIRh(CO)2]2 reacts in benzene with Cl(CH2)3PR2 under partially CO substitution to give the stable intermediate Cl(OC)Rh[PR2(CH2)3Cl]2. In boiling toluene oxidative addition of a CCl bond to rhodium occurs under formation of the phospharhodacyclopentane [CI(CH2)3R2P] Cl2(OC)-RhPR2CH2CH2CH2 (R  C6H5). The 31P{1H}-NMR spectra of the rhodium compound is characterized by an ABX system, that of the platinum by superposition of an ABX pattern with an AB spectrum.  相似文献   

14.
η5-C5H5(CO)2FeNa reacts with the benzimide chlorides C6H5(Cl)CNR (R  CH(CH3)2, C6H5) in boiling THF to give the η1-iminoacyl complexes η5-C5H5 (CO)2Fe[η1-C(C6H5)NR]. Alternatively, the new Fe complexes [η5-C5H5(CO)FeC(C6H5)N(CH3)C(C6H5)NCH3PF6 (IV) and [η5-C5H5(CO)2FeC(C6H5)N(CH3)C(C6H5)NCH3]PF6 (V) are formed under the same conditions, if R  CH3. Hudrolysis of the CN single bond of the ligand in V, not stabilized by a chelate effects as in IV, results in the formation of [η5-C5H5(CO)2FeC(C6H5)NHCH3]PF6 (VII). Reaction of η5-C5H5(CO)2 with N-benyzylbenzimido chloride yields η5-C5H5(CO)2FeCH2C6H5 as the only isolated product.  相似文献   

15.
The reaction of [Pt((F3C)CCH(CF3))(P(C2H5)3)2CH3OH]PF6 with allene in methanol affords a novel metallocyclic ethereal complex [Pt((F3C)CHC(CF3)C(CH3)CH2OCH3)(P(C2H5)3)2]PF6, which has been characterized by 1H, 2H, 19F and 31P NMR spectroscopy. Its structure has also been determined by a single crystal X-ray analysis. The crystal are monoclinic, space group P21/n, with cell dimensions a 20.012(5), b 17.222(5), c 8.902(3) Å and β 91.54(5)°. The structure was refined by full matrix least-squares methods on F, using 3097 unique observations collected by automated four circle diffractometer. Refinement converged at R  0.066. The Pt atom has a distorted square-planar coordination geometry, with cis P atoms, and PtP distances of 2.219(4) Å (trans to O) and 2.324(4) Å (trans to C). These results show the ethereal group is a weak ligand to platinum(II) but because of the chelating effect, its displacement by other ligands is thermodynamically not favorable. The mechanism of formation of the ethereal complex is also discussed.  相似文献   

16.
A preliminary study of the PbF2LnF3 systems (Ln = lanthanides and Y) has allowed the characterisation of three phases: a disordered fluorite-like solid solution Pb1?xLnxF2+x the domain of which increases with increasing temperature and dopant ion radius, and two anion-excess fluorite related superstructures: Pb2YF7 (tetragonal, space group I4 or I4m, a # aF√2, c # 3aF) and Pb4Ln3F17 with Ln = SmLu (rhombohedral, space group R3, ah # (aF√2)√7, ch # 2aF√3). The crystallographic characteristics of the two ordered phases have been confirmed by electron diffraction.  相似文献   

17.
18.
The structure of the compound trans-[PdCl {C(N-?-C6H4OMe)C(Me)N-?-C6H4OMe} (PPh3)2] was solved, using a conventional combination of Patterson and Fourier functions, least-squares refinements and electron density difference maps, to a reliability index R of 0.069 for the 2923 observed reflections collected by four-circle diffractometer. The palladium arom is surrounded in a roughly planar fashion by two trans phosphorus atoms, a chlorine atom, and a σ-bonded carbon atom of the diazabutadienyl group. This group assumes a trans configuration, the NCCN fragment being virtually planar and nearly normal to the mean coordination plane. The Pdligand bond lengths are: PdC 1.98(1), PdCl 2.41(1),PDP(1) 2.33(1) and PdP(2) 2.35(1) Å.  相似文献   

19.
Reactions between MX(PPh3)2(η-C5H5) (M = Ru, X = Cl; M = Os, X = Br) and 2-CH2CHC6H4PPh2 afford MX(η2-CH2CHC6H4PPh2)(η-C5H5); the Os complex is obtained in two isomeric forms. The X-ray structure of the major isomer shows the CC double bond (OsC, 2.214, 2.195 Å; CC, 1.57 Å) is almost coplanar with the OsBr vector, with the terminal C cis to Br; the minor isomer is assumed to have the alternative, more sterically congested conformation, with the β-C cis to Br. The chlororuthenium complex reacts with NaOMe/MeOH to give the corresponding hydrido complex, which also exists as two isomers in solution; reaction of this complex with CS2 gives the expected dithio acid derivative Ru(S2CCHMeC6H4PPh2)(η-C5H5), together with small amounts of a complex assumed to be Ru[S2C(CH2)2C6H4PPh2](η-C5H5). The X-ray structure of the major product reveals an unusual η3-S2C mode of coordination of the dithio acid fragment (RuS, 2.418, 2.426(1) Å; RuC 2.175(4) Å). Crystals of OsBr(η2-CH2CHC6H4P)Ph2)( η-C5H5) are monoclinic, space group P21/n, with a 12.696(2), b 21.719(6), c 15.929(3) Å, β 79.77(2)°, Z = 8; 2867 data (I > 2.5σ(I)) were refined to R = 0.040, Rw = 0.044. Crystals of Ru(η3-S2CCHMeC6H4PPh2)(η-C5H5) are orthorhombic, space group Pbca, with a 8.921(2), b 15.982(9), c 32.216(5) Å, Z = 8; 1685 data (I > 2.5σ(I)) were refined to R = 0.027, Rw = 0.030.  相似文献   

20.
In the 1H NMR spectrum of the complex [Os3H3(CO)9CC(CH2CH2]+ at 30°C, under conditions of rapid exchange, the single hydride resonance has two sets of satellites of equal intensity (separated by 32.0 and 28.8 Hz) caused by 187Os1H spin—spin coupling. The spectral data rule out the upright carbenium ion structure for the complex, and are consistent with the fluxional process involving hydrocarbon ligand rotation about the CC(CH2)2CH2 axis in a tilted structure, with concomitant rotation of the Os3H3(CO)9 moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号