首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metformin/Gliclazide extended release tablets were formulated with Eudragit NE30D by wet granulation technique. Two batches were prepared in order to study influence of drug polymer ratio on the tablet formation and in vitro drug release. The formulated tablets were characterized by disintegration time, hardness, friability, thickness, weight variation, and in vitro drug release. The percentage of polymer, with respect to Metformin/Gliclazide, required to produce tablets with acceptable qualities was 9 to 13.45. The percentage of polymer below this range released the drug immediately and above this range produced granules not suitable for tablet formation. The quantity of Metformin/Gliclazide present in the tablets and the release medium were estimated by a validated HPLC method. The formulated tablets had acceptable physicochemical characters and released the drug over 6-8 h. The data obtained from in vitro release studies were fitted with various kinetic models and was found to follow Higuchi kinetics.  相似文献   

2.
The formulation of Garcinia kola seeds into tablet dosage form and evaluation of some physical properties of the tablets are presented. A chemical assay was conducted on the dry, powdered seeds as well as the crude aqueous extract of the seeds. The dry powdered seeds contain 0.003% of flavonoids while the crude extract contained 0.007% of flavonoids based on rutin used as the standard. The powdered material (50 mg) and crude extract (10 mg) were formulated into tablets using the wet granulation method. Named binders were evaluated in these formulations. The various tablet parameters were evaluated, namely: weight variation, thickness and diameter, hardness, friability, disintegration time, dissolution profile and content uniformity. The results indicated that the tablets had good disintegration time, dissolution and hardness/friability profiles. Tablets formulated with starch had the best disintegration properties but were consequently very friable. Tablets formulated from 10 mg of the crude extract needed a larger proportion of diluents, which affected the tablet properties.  相似文献   

3.
The aim of this work was the realization of new formulations for vaginal application to improve the pharmacological effect of benzydamine, displaying both anti-inflammatory and antiseptic activities. For this reasons, this drug was formulated in solid dispersions, by using the mucoadhesive polymers HPMC and/or Carbopol(?), then compressed. Tablets were characterized by studies of friability, hardness, hydration, DSC, mucoadhesion and in vitro release. Kinetics, responsible for drug delivery, was investigated as well. Tablets prepared by using only HPMC showed the best results in terms of swelling and mucoadhesion (time and force) together with prolonged and complete drug release, by diffusive mechanism, through gelled layer. Despite the good mucoadhesive properties, Carbopol(?) does not represent a good excipient because, after the contact with water, it generates a spongy gel layer, not homogeneous, stiff, brittle and with breaking tendency when highly swelled. This kind of gel does not guarantee a linear drug release and could provoke discomfort because of fragment release. HPMC mucoadhesive tablets could be a proper delivery system for benzydamine administration representing a good alternative to traditional dosage forms for vaginal topical therapy.  相似文献   

4.
We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.  相似文献   

5.
The objective of the study is to formulate bilayer tablets consisting of atorvastatin calcium (AT) as an immediate release layer and nicotinic acid (NA) as an extended release layer. The immediate release layer was prepared using super disintegrant croscarmellose sodium and extended release layer using hydroxypropylmethyl cellulose (HPMC K100M). Both the matrix and bilayer tablets were evaluated for hardness, friability, weight variation, thickness, and drug content uniformity and subjected to in vitro drug release studies. The amount of AT and NA released at different time intervals were estimated by HPLC method. The bilayer tablets showed no significant change either in physical appearance, drug content or in dissolution pattern after storing at 40 degrees C/75% relative humiding (RH) for 3 months. The release of the drug from the tablet was influenced by the polymer content and it was much evident from thermogravimetry/differential thermal analysis (TG/DTA) analysis. The results indicated that the bilayer tablets could be a potential dosage form for delivering AT and NA.  相似文献   

6.
The purpose of this research was to mask the intensely bitter taste of aceclofenac (ACF) and to formulate oro dispersible tablet (ODT) of the taste-masked drug. Taste masking was done by complexing aceclofenac with Hydroxypropyl-β-Cyclodextrin (HPβCD) by different methods. Phase solubility studies indicated complex with possible stoichiometry of 1:1 and a stability constant of 221.11 M?1. The complexes were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry studies. The characterization studies confirmed inclusion of the ACF within the nonpolar cavity of HPβCD in the neutralization method (NM). Remarkable improvement in the in vitro drug release profiles in pH 6.8 phosphate buffer was observed with all complexes, especially the neutralization. The complexes of ACF–HPβCD (1:1) was compressed into tablet and properties of tablets such as tensile strength, wetting time, in vitro disintegration time, and disintegration in the oral cavity were investigated to elucidate the wetting and disintegration characteristics of tablets. Polyplasdone XL-10 7% wt/wt gave the minimum disintegration time. Tablets of batch F4 containing Avicel 200 and 7% wt/wt Polyplasdone XL-10 showed faster disintegration, within 12 s, than the marketed tablet (128 s). Good correlation between in vitro disintegration with in-house developed method and in the oral cavity was recognized. Taste evaluation of ODT in human volunteers revealed considerable taste masking with the degree of bitterness below threshold value. Thus, results conclusively demonstrated successful masking of taste and rapid disintegration of the formulated tablets in the oral cavity.  相似文献   

7.
A fast disintegrating compressed tablet was formulated using amino acids, such as L-lysine HCl, L-alanine, glycine and L-tyrosine as disintegration accelerator. The tablets having the hardness of about 4 kgf were prepared and the effect of amino acids on the wetting time and disintegration time in the oral cavity of tablets was examined on the basis of surface free energy of amino acids. The wetting time of the tablets increased in the order of L-lysine HCl, L-alanine, glycine and L-tyrosine, whereas the disintegration time in the oral cavity of the tablets increased in the order of L-alanine, glycine, L-lysine HCl and L-tyrosine. These behaviors were well analyzed by the introduction of surface free energy. When the polar component of amino acid was large value or the dispersion component was small value, faster wetting of tablet was observed. When the dispersion component of amino acid was large value or the dispersion component was small value, faster disintegration of tablet was observed, expect of L-tyrosine tablet. The fast disintegration of tablets was explained by the theory presented by Matsumaru.  相似文献   

8.
The aims of the present study were to prepare hydroxypropylmethyl cellulose (HPMC)-based porous matrix tablets for gastroretentive drug delivery and to characterize their physicochemical properties. Gabapentin (GBP) was used as a model drug. Paste containing GBP, HPMC and water was molded and freeze-dried to prepare freeze-dried gastroretentive matrix tablet (FD-GRT). In vitro drug release and erosion studies were also performed. Although FD-GRT exhibited porous structure, they had good tablet strength and friability. Density of FD-GRT ranged from 0.402 to 0.509 g/cm3 and thus they could float on the medium surface without any lag time. FD-GRT was remained floated until the entire matrix erosion or end of drug release during in vitro release test. Release behavior of GBP could be modulated by the amount and the viscosity grade of HPMC. However, large amount and high viscosity of HPMC caused trouble in molding prior to freeze-drying. Addition of ethylcellulose could retard the release rate of GBP, with relatively low increase in viscosity of paste. Since pores generated by freeze drying imparted buoyancy for gastric retention to FD-GRT, additional materials for buoyancy was not necessary and FD-GRT had no lag time for buoyancy due to low density. Therefore it could be a promising tool for gastroretentive drug delivery.  相似文献   

9.
The aims of the present research were to mask the intensely bitter taste of sumatriptan succinate and to formulate orally disintegrating tablets (ODTs) of the taste masked drug. Taste masking was performed by coating sumatriptan succinate with Eudragit EPO using spray drying technique. The resultant microspheres were evaluated for thermal analysis, yield, particle size, entrapment efficiency and in vitro taste masking. The tablets were formulated by mixing the taste masked microspheres with different types and concentrations of superdisintegrants and compressed using direct compression method followed by sublimation technique. The prepared tablets were evaluated for weight variation, thickness, hardness, friability, drug content, water content, in vitro disintegration time and in vitro drug release. All the tablet formulations disintegrated in vitro within 37-410 s. The optimized formulation containing 5% Kollidon CL-SF released more than 90% of the drug within 15 min and the release was comparable to that of commercial product (Suminat?). In human volunteers, the optimized formulation was found to have a pleasant taste and mouth feel and disintegrated in the oral cavity within 41 s. The optimized formulation was found to be stable and bioequivalent with Suminat?.  相似文献   

10.
Oral controlled release matrix tablets of zidovudine were prepared using different proportions and different viscosity grades of hydroxypropyl methylcellulose. The effect of various formulation factors like polymer proportion, polymer viscosity and compression force on the in vitro release of drug were studied. In vitro release studies were carried out using United States Pharmacopeia (USP) type 1 apparatus (basket method) in 900 ml of pH 6.8 phosphate buffer at 100 rpm. The release kinetics were analyzed using Zero-order model equation, Higuchi's square-root equation and Ritger-Peppas' empirical equation. Compatibility of drug with various formulations excipients used was studied. In vitro release studies revealed that the release rate decreased with increase in polymer proportion and viscosity grade. Increase in compression force was found to decrease the rate of drug release. Matrix tablets containing 10% hydroxypropyl methylcellulose (HPMC) 4000 cps were found to show a good initial drug release of 21% in the first hour and extended the release upto 16 h. Matrix tablets containing 20% HPMC 4000 cps and 10% HPMC 15000 cps showed a first hour release of 18% and extended the release upto 20 h. Mathematical analysis of the release kinetics indicated that the nature of drug release from the matrix tablets followed non-Fickian or anomalous release. No incompatibility was observed between the drug and excipients used in the formulation of matrix tablets. The developed controlled release matrix tablets of zidovudine, with good initial release (17-25% in first hour) and which extend the release upto 16-20 h, can overcome the disadvantages of conventional tablets of zidovudine.  相似文献   

11.
Nilvadipine (NIL) solid dispersion using crospovidone (Cross-linked-N-vinyl-2-pyrolidone, cl-PVP) and methylcellulose (MC) as carriers was applied to tablet formulation. Several grades of cl-PVP and MC were used, and their influence on tablet properties such as hardness, disintegration, dissolution and chemical stability were investigated. The agitation granulation method was used for preparation of solid dispersion granules, and the granules were compressed using a rotary tableting machine, and finally the obtained tablets were coated with film. As the particle size of cl-PVP decreased, hardness and apparent solubility were increased, while dissolution rate was lowered. When a higher viscosity grade of MC was used, hardness and dissolution rate were increased, and apparent solubility did not change. All batches of tablets were chemically stable at 40 degrees C, 75% relative humidity (R.H.) for six months. Finally, tablets with enhanced dissolution properties were obtained by using Polyplasdone XL-10 and Metolose SM-25 as the grades of cl-PVP and MC, respectively. These formulation tablets showed higher solubility and dissolution rate during storage as well as initial indicating good physical stability.  相似文献   

12.
The incidence of compression conditions, porosity and polymer degradation on human growth hormone (hGH) release from PLGA implantable tablets was evaluated with the aim of gaining insight in the mechanism involved in drug delivery from biodegradable matrices. Tablets elaborated by direct compression of hGH with PLGA, applying various compression forces for different times, kept the integrity and the stability of the hormone. Tablet dimensions, viscoelastic properties, glass to rubber transition temperature (Tg), PLGA degradation rate and water uptake were analyzed in the freshly prepared implantable tablets as well as at several times during release test in phosphate buffer pH 7.4. Placebo tablets were also prepared to evaluate the incidence of hGH on the physicomechanical properties of the device and PLGA degradation rate. Porosity remarkably determined the amount of hGH released, through an effect on the easiness of water penetration in the tablet and on the beginning of PLGA degradation. The decrease in PLGA molecular weight during the first days in the release medium, despite of being minor, significantly conditioned hGH release rate. The more dramatic changes in PLGA molecular weight observed after 20 days in the release medium notably reduced the Tg and the viscous and elastic moduli of the tablets. The overall analysis of the events underwent by the tablets in contact with the aqueous medium was used to explain the drug release profile and may help to optimize the design of the PLGA-based implantable tablets as peptidic drug delivery systems.  相似文献   

13.
A novel floating sustained release tablet having a cavity in the center was developed by utilizing the physicochemical properties of L-menthol and the penetration of molten hydrophobic polymer into tablets. A dry-coated tablet containing famotidine as a model drug in outer layer was prepared with a L-menthol core by direct compression. The tablet was placed in an oven at 80°C to remove the L-menthol core from tablet. The resulting tablet was then immersed in the molten hydrophobic polymers at 90°C. The buoyancy and drug release properties of tablets were investigated using United States Pharmacopeia (USP) 32 Apparatus 2 (paddle 100 rpm) and 900 ml of 0.01 N HCl. The L-menthol core in tablets disappeared completely through pathways in the outer layer with no drug outflows when placed in an oven for 90 min, resulting in a formation of a hollow tablet. The hollow tablets floated on the dissolution media for a short time and the drug release was rapid due to the disintegration of tablet. When the hollow tablets were immersed in molten hydrophobic polymers for 1 min, the rapid drug release was drastically retarded due to a formation of wax matrices within the shell of tablets and the tablets floated on the media for at least 6 h. When Lubri wax? was used as a polymer, the tablets showed the slowest sustained release. On the other hand, faster sustained release properties were obtained by using glyceryl monostearate (GMS) due to its low hydrophobic nature. The results obtained in this study suggested that the drug release rate from floating tablets could be controlled by both the choice of hydrophobic polymer and the combined use of hydrophobic polymers.  相似文献   

14.
The purpose of this study was to obtain a nicorandil pulsatile release tablet that has a well-regulated release lag time. When nicorandil is used as an antiangina drug, administration time control is important. A pulsatile release tablet is one of the effective approaches to modified release to reduce daily administration frequency. In this study, a pulsatile release tablet of nicorandil was formulated by fumaric acid dry coating around the core tablet including nicorandil. The model tablets, which had different content ratios of excipients in the dry-coating layer, were characterized by a dissolution test. The results showed that the release lag time was generated with fast release profiles. Various lag time controls of tablets were achieved, from 60 to 310 min on average, by variation of outer layer composition. From an analysis of the relation between lag times and outer layer composition, the key ingredient for prolongation of lag time was found to be fumaric acid. To analyze the lag time generation mechanism, water penetration for tablet was measured. The results indicated that the penetration depth was proportionate to the square root of time and the lag time formation mechanism was simple water penetration through the matrix of fumaric acid to the tablet core. The results also showed that the Washburn equation could be used to design the lag time of the pulsatile release tablet in this study. In conclusion, novel release control technology using fumaric acid was appropriate to obtain a nicorandil pulsatile release tablet that has well regulated lag time.  相似文献   

15.
Polymorphic transition and stability problems during amorphous drug formulation are the major limiting factors in pharmaceutical technology. The purpose of the study was to evaluate the ability of polyglycolized glycerides (Gelucire) in protection of amorphous form of drug during compression and shelf life with lower proportion. Amorphous etoricoxib (AET) was prepared by spray drying technique. Tablets of AET and melt granules of AET (MG-AET) with Gelucire 50/13 were prepared. Tablets parameters like hardness, disintegration and content uniformity were evaluated. Tablets were evaluated immediately after compression and on storage for 3 months at ambient conditions to determine degree of transformation using X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and dissolution profiles. Spray drying yielded the amorphous etoricoxib. Content uniformity in the tablet was in between 95 to 105%. Other parameters like disintegration and hardness were well within the limits. The results showed significant difference in the degree of crystallinity between AET tablet and MG-AET tablet. MG-AET tablet showed absence of crystallinity after 3 months storage. The reason could be formation of hydrogen bonding between the Gelucire and AET. Also Gelucire can be tableted very easily under low pressure and showed elastic recovery. Gelucire yielded a soft embedding during tableting, which prevented the polymorphic transformation. Polyglycolized glycerides (Gelucire 50/13) are able to protect amorphous etoricoxib during compression. As excipient required is low, it became possible to prepare tablet formulation as compared to other excipient like polyvinylpyrrolidon (PVP).  相似文献   

16.
Risperidone is an atypical antipsychotic drug used to treat schizophrenia. This study aims to formulate risperidone as effervescent tablets to improve patient compliance. Different nanoemulsion combinations were loaded with risperidone to improve its poor water solubility then adsorbed on Aeroperl. The formula showing highest drug dissolution was formulated as effervescent tablets. Factorial design was applied for different tablet formulation variables and the prepared formulae were tested for different criteria in comparison with their corresponding formulae containing drug without nanoemulsion formulation. Statistical analysis was used to determine the most desirable tablet formula considering its Carr index, effervescence time, and drug release.  相似文献   

17.
Cyclodextrin polymer was compared to other well known disintegrants concerning the swelling properties /water uptake, moisture uptake, hydration capacity, sedimentation volume in water/. Its high disintegrating effect was proved in directly compressed tablets as well as in tablets made by wet granulation. A remarkable improvement in tablet properties was observed. Not only the disintegration of tablets and the dissolution of the drug was accelerated but also the hardness increased when CDP was used as disintegrant.  相似文献   

18.
Controlled release matrices have predictable drug release kinetics, provide drugs for an extended period of time, and reduce dosing frequency with improved patient compliance as compared with conventional tablet dosage forms. In the current research work, losartan potassium controlled release matrix tablets were fabricated and prepared with rate altering agents; that is, Ethocel grade 100 combined with Carbopol 934PNF. Various drug to polymer ratios were used. HPMC, CMC, and starch were incorporated in some of the matrices by replacing some amount of filler (5%). The direct compression method was adopted for the preparation of matrices. In phosphate buffer (pH 6.8), the dissolution study was conducted by adopting the USP method-I as the specified method. Drug release kinetics was determined and dissolution profiles were also compared with the reference standard. Prolonged release was observed for all matrices, but those with Ethocel 100FP Premium showed more extended release. The co-excipient (HPMC, CMC, and starch) exhibited enhancement in the drug release rates, while all controlled release matrices released the drug by anamolous non-Fickian diffusion mechanism. This combination of polymers (Ethocel grade 100 with Carbopol 934PNF) efficiently extended the drug release rates up to 24 h. It is suggested that these matrix tablets can be given in once a day dosage, which might improve patient compliance, and the polymeric blend of Ethocel grade 100 with Carbopol 934PNF might be used in the development of prolonged release matrices of other water-soluble drugs.  相似文献   

19.
Percolation theory is a multidisciplinary theory that studies chaotic systems. It has been applied in the pharmaceutical field since 1987. The application of this theory to study the release and hydration rate of hydrophilic matrices allowed for first time to explain the changes in release and hydration kinetic of swellable matrices type controlled delivery systems. The objective of the present paper is to estimate the percolation threshold of HPMC K4M in matrices of lobenzarit disodium and to apply the obtained result to the design of hydrophilic matrices for the controlled delivery of this drug. The materials used to prepare the tablets were Lobenzarit disodium (LBD) and HPMC of viscosity grade K4M. The drug mean particle size was 42+/-0.61 mum and the polymer was sieved and 150-200 microm granulometric fraction was selected. The formulations studied were prepared with different excipient contents in the range of 10-80% w/w. Dissolution studies were carried out using the paddle method and the water uptake measurements were performed using a modified Enslin apparatus. In order to estimate the percolation threshold, the behaviour of the kinetic parameters with respect to the volumetric fraction of each component at time zero, was studied. According to percolation theory, the critical points observed in dissolution and water uptake studies are attributed to the existence of an excipient percolation threshold. This threshold was situated between (18.58 to 24.33% v/v of HPMC). Therefore, the LBD-HPMC K4M matrices with a relative HPMC particle size of should be formulated with an excipient content above 24.33% v/v of HPMC, to obtain a control of the drug release from these systems.  相似文献   

20.
Studies of the fronts which are created by the process of swelling, their movement and the effect of drug solubility on release mechanisms, are presented. Tablets comprising solely of hydroxypropyl methylcellulose (HPMC) (Metolose 90 SH 100 000 SR), HPMC with sodium diclofenac (relatively soluble in the buffer solution used) and HPMC with furosemide (insoluble in the buffer solution used) were prepared. The tablets were made by direct compression in a manual hydraulic press and the matrix swelling was studied by an optical analysis technique. During the experimental procedure measurements were taken of the gel layer dimensions, the movement of the swelling, and the erosion and diffusion fronts at different time points. These measurements allowed the investigation of the possible mechanisms involved in the swelling/release process. The results showed that the rate and mechanism of drug release from swellable matrices depends on the following factors: the dissolution, the diffusion of the drug, the translocation of undissolved drug particles in the gel layer, and the solubility of the drugs used. This is supported by the following: (a) the diffusion layer thickness, which is observed as a result of the presence of undissolved drug in the gel layer, increases in the case of the water insoluble drug furosemide and as a result the diffusion front converges on the erosion front; (b) from the analysis of the dissolution data it appears that sodium diclofenac is released as a result of diffusion via the gel layer as well as due to polymer relaxation and/or matrix erosion. Conversely, the release of furosemide is only dependent on the polymer relaxation and/or matrix erosion. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号