首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The syntheses of the parent compounds [(p-Bu(t)-calix[4]-(O)2(OR)2)Fe-L] [R = Me, L = THF, 5; R = Bu(n), L = THF, 6; R = PhCH2, L = THF, 7; R = SiMe3, L = none, 8] have been performed by reacting the protonated form of the dialkylcalix[4]arene with [Fe2Mes4] [Mes = 2,4,6-Me3C6H2]. All of them undergo one-electron oxidative functionalization. By use of different oxidizing agents, the following iron(III) derivatives have been obtained: [(p-Bu(t)-calix[4]-(O)2(OR)2)Fe-X] [X = Cl, R = Me, 9; X = I, R = Me, 10] and [(p-Bu(t)-calix[4]-(O)2(OR)2)2Fe2(mu-X] [X = O, R = Me, 11; X = O, R = Bu(n), 12; X = S, R = Me, 13], 9 and 10 being particularly appropriate for a further functionalization of the metal. The last three display typical antiferromagnetic behavior [J = -78.6 cm-1, 11; J = -64.1 cm-1, 13]. In the case of 7 and 8, the reaction with O2 led to the dealkylation of one of the alkoxo groups, with the formation of a dimeric iron(III) derivative ([mu-p-Bu(t)-calix[4]-(O)3(OR))2Fe2] [R = PhCH2, 14; R = SiMe3, 15] [J = -9.8 cm-1]. The reaction of the parent compounds with ButNC and diazoalkanes led to the formation of [Fe=C] functionalities supported by a calix[4]arene oxo surface. The following compounds have been isolated and characterized: ([p-Bu(t)-calix[4]-(O)2(OR)2)Fe=CNBut] [R = SiMe3, 16, nu CN = 2175 cm-1], ([p-Bu(t)-calix[4]-(O)2(OR)2)Fe=CPh2] [R = Me, 17; R = PhCH2, 18; R = SiMe3, 19]. The three carbene complexes 17-19 display quite an unusual high-spin state, which is a consequence of the formation of a weak pi interaction between the metal and the carbene carbon, as confirmed by the extended Hückel calculations. The carbene functionality has been removed from the iron center in the reaction with O2 and HCl. The proposed structures have been supported by X-ray analyses of complexes 8, 9, 12, 14, 16, 17, and 19.  相似文献   

2.
Transition-metal-borylene complexes of the type [(OC)(5)M=BR] {M=Cr, Mo, W; R=N(SiMe(3))(2), 1a-3a, Si(SiMe(3))(3), 4a} and [(OC)(4)Fe=B=N(SiMe(3))(2)] (8) were prepared by salt elimination reactions. Synthesis of the latter complex was accompanied by the formation of substantial amounts of an unusual dinuclear iron complex [Fe(2){mu-C(2)O(2)(BN(SiMe(3))(2))}(2)(CO)(6)] (9). The aminoborylene complexes of Group 6 metals were converted to trans-[(Cy(3)P)(CO)(4)M=B=N(SiMe(3))(2)] (5a-7a) by irradiation in the presence of PCy(3). Structural and spectroscopic parameters were discussed with respect to the trans-effect of the borylene ligand and the degree of M-B d(pi)-p(pi)-backbonding. Computational studies were performed on Group 6-borylene complexes. The population and topological analyses as well as the molecular orbital composition are consistent with the presence of both sigma-and pi-type interactions. There are, however, indications that the d(pi)-p(pi)-backbonding in the silylborylene complex is significantly more pronounced than in the aminoborylene complexes.  相似文献   

3.
Density functional theory calculations have been performed for the terminal borylene, alylene, and gallylene complexes [(η(5)-C(5)H(5))(CO)(3)M(ENR(2))] (M = V, Nb; E = B, Al, Ga; R = CH(3), SiH(3), CMe(3), SiMe(3)) using the exchange correlation functional BP86. The calculated geometry parameters of vanadium borylene complex [(η(5)-C(5)H(5))(CO)(3)V{BN(SiMe(3))(2)}] are in excellent agreement with their available experimental values. The M-B bonds in the borylene complexes have partial M-B double-bond character, and the B-N bonds are nearly B═N double bonds. On the other hand, the M-E bonds in the studied metal alylene and gallylene complexes represent M-E single bonds with a very small M-E π-orbital contribution, and the Al-N and Ga-N bonds in the complexes have partial double-bond character. The orbital interactions between metal and ENR(2) in [(η(5)-C(5)H(5))(CO)(3)M(ENR(2))] arise mainly from M ← ENR(2) σ donation. The π-bonding contribution is, in all complexes, much smaller. The contributions of the electrostatic interactions ΔE(elstat) are significantly larger in all borylene, alylene, and gallylene complexes than the covalent bonding ΔE(orb); that is, the M-ENR(2) bonding in the complexes has a greater degree of ionic character.  相似文献   

4.
The first metal organic thallium antimonide, the heterocycle [Me2TlSb(SiMe3)2]3, was synthesized by reaction of [Me2AlSb(SiMe3)2]3 with the Lewis acid-base adduct dmap-TlMe3 (dmap = 4-dimethylaminopyridine). The analogous TlBi heterocycle [Me2TlBi(SiMe3)2]3 couldn't be isolated due to its limited thermal stability in solution.  相似文献   

5.
The reaction of the arylated Fischer carbene complexes [(CO)5M=C(OEt)Ar] (Ar=Ph; M = Cr, W; 2-MeC6H4; 2-MeOC6H; M = W) with the phosphaalkenes RP=C(NMe2), (R=tBu, SiMe3) afforded the novel phosphaalkene complexes [[RP=C(OEt)Ar]M(CO)5] in addition to the compounds [(RP=C(NMe2)2]M(CO)5]. Only in the case of the R = SiMe3 (E/Z) mixtures of the metathesis products were obtained. The bis(dimethylamino)methylene unit of the phosphaalkene precursor was incorporated in olefins of the type (Me2N)2C=C(OEt)(Ar). Treatment of [(CO)5W=C(OEt)(2-MeOC6H4)] with HP=C(NMe2)2 gave rise to the formation of an E/Z mixture of [[(Me2N)2CH-P=C(OEt)(2-MeOC6H4)]W(CO)5] the organophosphorus ligand of which formally results from a combination of the carbene ligand and the phosphanediyl [P-CH(NMe2)2]. The reactions reported here strongly depend on an inverse distribution of alpha-electron density in the phosphaalkene precursors (Pdelta Cdelta+), which renders these molecules powerfu] nucleophiles.  相似文献   

6.
The reaction of carbon dioxide with a tetranuclear tetrahydrido yttrium complex [(C5Me4SiMe3)Y(mu-H)]4(L) (L = Me3SiCC(H)C(H)CSiMe3) (1) rapidly afforded the corresponding bis(methylene diolate) complex [(C5Me4SiMe3)Y]4(mu-O2CH2)2(L) (2), while the reactions of an aryl isocyanate with 1 led to selective formation of the mu3-oxo complex [(C5Me4SiMe3)Y]4(mu-O)( mu-H)2(L) (5) or [(C5Me4SiMe3)Y]4(mu-O)2(L) (7), depending on the substrate ratio. Both the methylene diolate and the oxo complexes can undergo CO2 insertion reactions to give the corresponding carbonate complexes. These reactions not only yield a new series of polynuclear yttrium complexes having novel structures but also shed new light on the mechanistic aspects of the heterogeneous hydrogenation of COmicron2. The high reactivity of the polynuclear mu3-oxo yttrium complexes 5 and 7 could also make them novel molecular models for study of metal oxide-supported catalysts.  相似文献   

7.
A comprehensive investigation into the cooperative reactivity of two chemically complementary metal-complex fragments in early-late heterodinuclear complexes has been carried out. Reaction of the partially fluorinated tripodal amidozirconium complexes [HC-(SiMe2NR)3Zr(mu-Cl)2Li(OEt2)2] (R = 2-FC6H4: 2a, 2,3,4-F3C6H4: 2b) with K[CpM(CO)2] (M=Fe, Ru) afforded the stable metal-metal bonded heterodinuclear complexes [HC[SiMe2NR]3-Zr-MCp(CO)2] (3-6). Reaction of the dinuclear complexes with methyl isonitrile as well as the heteroallenes CO2, CS2, RNCO and RNCS led to insertion into the polar metal-metal bond. Two of these complexes, [HC[SiMe2N(2-FC6-H4)]3Zr(S2C)Fe(CO)2Cp] (9a) and [HC-[SiMe2N(2-FC2H4)]3Zr-(SCNPh)Fe(CO)2-Cp] (12), have been structurally characterized by a single crystal X-ray structure analysis, proving the structural situation of the inserted substrate as a bridging ligand between the early and late transition metal centre. The reactivity towards organic carbonyl derivatives proved to be varied. Reaction of the heterobimetallic complexes with benzyl and ethylbenzoate led to the cleavage of the ester generating the respective alkoxozirconium complexes [HC[SiMe2N(2-FC6H4)]3ZrOR] (R = Ph-CH2: 13a, Et: 13b) along with [CpFe-[C(O)Ph](CO)2], whereas the analogous reaction with ethyl formate gave 13b along with [CpFeH(CO)2]; this latter complex results from the instability of the formyliron species initially formed. Aryl aldehydes were found to react with the Zr-M complexes according to a Cannizzaro disproportionation pattern yielding the aroyliron and ruthenium complexes along with the respective benzoxyzirconium species. The transfer of the aldehyde hydrogen atom in the course of the reaction was established in a deuteriation experiment. [HC[SiMe2-N(2-FC6H4)]3Zr-M(CO)2Cp] reacted with lactones to give the ring-opened species containing an alkoxozirconium and an acyliron or acylruthenium fragment; the latter binds to the early transition metal centre through the acyl oxygen atom, as evidenced from the unusuallly low-field shifted 13C NMR resonances of the RC(O)M units. Ketones containing a-CH units react with the Zr-Fe complexes cooperatively to yield the aldol coupling products coordinated to the zirconium complex fragment along with the hydridoiron compound [CpFeH(CO)2], whereas 1,2-diphenylcyclopropenone underwent an oxygen transfer from the keto group to a CO ligand to give a linking CO2 unit and a cyclopropenylidene ligand coordinated to the iron fragment in [HC-[Si(CH3)2N(2,3,4-F3C6H2)]3Zr(mu-O2C)-Fe(CO)[C3Ph2)Cp] (19). The atom transfer was established by 17O and 13C labelling studies. Similar oxygen-transfer processes were observed in the reactions with pyridine N-oxide, dimethylsulfoxide and methylphenylsulfoxide.  相似文献   

8.
Group 5 metal complexes [M(eta5-C5H5)[eta5-C5H4SiMe2(CH2-eta]2-CH=CH2)]X] (M = Nb, X = Me, CH2Ph, CH2SiMe3; M = Ta, X = Me, CH2Ph) and [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2-eta2-CH=CH2)]X] (X = Cl, Me, CH2Ph, CH2SiMe3) containing a chelating alkene ligand tethered to a cyclopentadienyl ring have been synthesized in high yields by reduction with Na/Hg (X = Cl) and alkylation with reductive elimination (X = alkyl) of the corresponding metal(iv) dichlorides [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]Cl2] (Cp = C5H5, M = Nb, Ta, Cp = C5Me5, M = Ta). These chloro- and alkyl-alkene coordinated complexes react with CO and isocyanides [CNtBu, CN(2,6-Me2C6H3)] to give the ligand-substituted metal(III) compounds [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]XL] (X = Cl, Me, CH2Ph, CH2SiMe3). Reaction of the chloro-alkene tantalum complex with LiNHtBu results in formation of the imido hydride derivative [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2CH=CH2)]H(NtBu)]. NMR studies for all of the new compounds and DFT calculations for the alkene-coordinated metal complexes are compared with those known for related group 4 metal cations.  相似文献   

9.
A new group of CO-releasing molecules, CO-RMs, based on cyclopentadienyl iron carbonyls have been identified. X-Ray structures have been determined for [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)X], X = Cl, Br, I, NO(3), CO(2)Me, [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)](2), [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(2)](2) and [(eta-C(5)H(4)CO(2)Me)Fe(CO)(3)][FeCl(4)]. Half-lives for CO release, (1)H, (13)C, and (17)OC NMR and IR spectra have been determined along with some biological data for these compounds, [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(3)](+) and [[eta-C(5)H(4)(CH(2))(n)CO(2)Me]Fe(CO)(3)](+), n = 1, 2. More specifically, cytotoxicity assays and inhibition of nitrite formation in stimulated RAW264.7 macrophages are reported for most of the compounds analyzed. [(eta-C(5)H(5))Fe(CO)(2)X], X = Cl, Br, I, were also examined for comparison. Correlations between the half-lives for CO release and spectroscopic parameters are found within each group of compounds, but not between the groups.  相似文献   

10.
The coordination chemistry of chelating silanedithiolato ligands has been investigated on Fe(II), Co(II), Pd(II), Cu(I), and Ag(I). Treatment of M(OAc)(2) (M = Fe, Co, Pd) with cyclotrisilathiane (SSiMe(2))(3) in the presence of Lewis bases resulted in formation of Fe(S(2)SiMe(2))(PMDETA) (1), Fe(S(2)SiMe(2))(Me(3)TACN) (2), Co(S(2)SiMe(2))(PMDETA) (3), and Pd(S(2)SiMe(2))(PEt(3))(2) (4) (PMDETA = N,N,N',N',N' '-pentamethyldiethylenetriamine; Me(3)TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane). The analogous reactions of M(OAc) (M = Cu, Ag) in the presence of PEt(3) gave rise to the dinuclear complexes M(2)[(SSiMe(2))(2)S](PEt(3))(3) [M = Cu (5), Ag (6)]. Complexes were characterized in solution by (1)H, (31)P[(1)H], and (29)Si[(1)H] NMR and in the solid state by single-crystal X-ray diffraction. Mononuclear complexes 1-3 have a four-membered MS(2)Si ring, and these five-coordinate complexes adopt trigonal-bipyramidal (for the PMDETA adducts) or square-pyramidal (for the Me(3)TACN adduct) geometries. In dimer 6, the (SSiMe(2))(2)S(2)(-) silanedithiolato ligand bridges two metal centers, one of which is three-coordinate and the other four-coordinate. The chelating effect of silanedithiolato ligands leads to an increase in the stability of silylated thiolato complexes.  相似文献   

11.
The reaction of [(C5Me5)2Ln][(mu-Ph)2BPh2] complexes with the lithium salt of (trimethylsilyl)diazomethane, Li[Me3SiCN2], gave products formulated as the dimeric isocyanotrimethylsilyl amide complexes {(C5Me5)2Ln[mu-N(SiMe3)NC]}2 (Ln = Sm, 1; La, 2). Reactions of (C5Me5)2Sm and [(C5Me5)2Sm(mu-H)]2 with Me3SiCHN2 also form 1. Complexes 1 and 2 react with Me3CCN to form the 1,2,3-triazolato complexes (C5Me5)2Ln(NCCMe3)[NNC(SiMe3)C(CMe3)N] (Ln = Sm, 3; La, 4). Complex 2 reacts with Me3SiN3 to make the isocyanide ligated azide complex {(C5Me5)2La[CNN(SiMe3)2](mu-N3)}3, 5.  相似文献   

12.
Transition metal complexes with terminal oxo and dioxygen ligands exist in metal oxidation reactions, and many are key intermediates in various catalytic and biological processes. The prototypical oxo‐metal [(OC)5Cr? O, (OC)4Fe? O, and (OC)3Ni? O] and dioxygen‐metal carbonyls [(OC)5Cr? OO, (OC)4Fe? OO, and (OC)3Ni? OO] are studied theoretically. All three oxo‐metal carbonyls were found to have triplet ground states, with metal‐oxo bond dissociation energies of 77 (Cr? O), 74 (Fe? O), and 51 (Ni? O) kcal/mol. Natural bond orbital and quantum theory of atoms in molecules analyses predict metal‐oxo bond orders around 1.3. Their featured ν(MO, M = metal) vibrational frequencies all reflect very low IR intensities, suggesting Raman spectroscopy for experimental identification. The metal interactions with O2 are much weaker [dissociation energies 13 (Cr? OO), 21 (Fe? OO), and 4 (Ni? OO) kcal/mol] for the dioxygen‐metal carbonyls. The classic parent compounds Cr(CO)6, Fe(CO)5, and Ni(CO)4 all exhibit thermodynamic instability in the presence of O2, driven to displacement of CO to form CO2. The latter reactions are exothermic by 47 [Cr(CO)6], 46 [Fe(CO)5], and 35 [Ni(CO)4] kcal/mol. However, the barrier heights for the three reactions are very large, 51 (Cr), 39 (Fe), and 40 (Ni) kcal/mol. Thus, the parent metal carbonyls should be kinetically stable in the presence of oxygen. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
(4-Methyl-pyridin-2-yl)(trimethylsilanyl)amine (ApSi-H) and tert-butyl(4-methyl-pyridin-2-yl)amine (AptBu-H) were synthesized via salt metathesis and aryl amination reactions, respectively. Lithiation of these two aminopyridines using n-BuLi and the reactions with [(dme)NiCl2] (dme = dimethoxyethane) or [(cod)PdCl2] (cod = cyclooctadiene) in THF at low temperature gave rise--after workup in hexane--to group 10 amido compounds, [(ApSi)4Ni2], [(AptBu)2Pd], [(AptBu-H)(AptBu)2Ni], [(AptBu)3(C2H5O)3Ni3OLi(thf)], and [(AptBu)2Ni(tBupy)2] (tBupy = 4-tert-butylpyridine). The aminopyridinato complexes were characterized by X-ray crystal structure analysis. The highly strained binding situation of the aminopyridinato ligands suggested that these compounds might be efficiently converted into catalytically active species. The applications of some of the synthesized complexes as Suzuki cross-coupling catalysts (activation of aryl chlorides) are described and [(ApSi)4Ni2] is a rare example of a "phosphine-free" catalyst system. A number of late transition metal complexes were found to successfully catalyze polymerization of MeH2SiSiH2Me toward soluble, linear poly(methylsilane). Remarkable activity was observed for [(ApSi)2Pd].  相似文献   

14.
Wu Y  Wang S  Zhu X  Yang G  Wei Y  Zhang L  Song HB 《Inorganic chemistry》2008,47(12):5503-5511
A series of four coordinate rare earth metal amides with general formula ((CH2SiMe2)[(2,6- IPr2C6H3)N]2)LnN(SiMe3)2(THF) [(Ln = Yb(2), Y (3), Dy (4), Sm (5), Nd (6)] containing a diamido ligand (CH2SiMe2)[(2,6-iPr2C6H3)N]2(2-) with a CH2SiMe2 link were synthesized in good yields via reaction of [(Me3Si)2N]3Ln(III)(mu-Cl)Li(THF)3 with the corresponding diamine (CH2SiMe2)[(2,6-iPr2C6H3)NH]2 (1). All compounds were fully characterized by spectroscopic methods and elemental analyses. The structures of complexes 2, 3, 4, 5, and 6 were determined by single-crystal X-ray analyses. Investigation of the catalytic properties of the complexes indicated that all complexes exhibited a high catalytic activity on the cyclotrimerization of aromatic isocyanates, which represents the first example of cyclopentadienyl-free rare earth metal complexes exhibiting a high catalytic activity and a high selectivity on cyclotrimerization of aromatic isocyanates. The temperatures, solvents, catalyst loading, and the rare earth metal effects on the catalytic activities of the complexes were examined.  相似文献   

15.
Investigations of Sb–Sb Bond Formation Reactions in the Coordination Sphere of Transition Metals The reaction of SbCl3 with various transition metal metalates of the type K[MLn] [MLn = Ni(CO)Cp*, Fe(CO)Cp′, Co(CO)4; Cp* = η5‐C5Me5, Cp′ = η5‐C5H4Me] in the presence of [Cr(CO)5thf] have been studied. With K[Ni(CO)Cp*] and K[Fe(CO)2Cp′] the trigonal‐pyramidal complexes [(μ3‐Sb){Ni(CO)Cp*}3] ( 1 ) and [(μ3‐Sb){Fe · (CO)2Cp′}3] ( 2 ), respectively, are obtained. The reaction with K[Co(CO)4] leads to the tetrahedral cluster [Co3(CO)93‐Sb{Cr(CO)5})] ( 3 ) and the butterfly cluster [Co2(CO)6(μ‐SbCl)(μ‐SbCl{Cr(CO)5})] ( 4 ). All products are characterised by X‐ray crystal structure determination. In contrast to the corresponding [(CO)5CrPCl3] system forming P–P bonds, starting from SbCl3/[Cr(CO)5thf] does not cause a Sb–Sb bond formation.  相似文献   

16.
Treatment of the allyl-containing compounds Me2Si(CH2CHCH2)2 and MeSi(CH2CHCH2)3 with thioacetic acid in the presence of AIBN gave Me2Si[(CH2)3SC(O)CH3]2 and MeSi[(CH2)3SC(O)CH3]3, respectively, which were reduced with LiAlH4 to the dithiols Me2Si[(CH2)3SH]2(3) and MeSi[(CH2)3SH]3(4). This protocol was applied to the first and second generations of the doubly and triply-branched carbosilane allyl dendrimers, Si[(CH2)3SiMe(CH2CHCH2)2]4(G(1)allyl-8), Si[(CH2)3SiMe{(CH2)3SiMe(CH2CHCH2)2}2]4(G(2)allyl-16), Si[(CH2)3Si(CH2CHCH2)3]4(G(1)allyl-12), and Si[(CH2)3Si{(CH2)3Si(CH2CHCH2)3}3]4(G(2)allyl-36) to give the corresponding SH functionalised surface dendrimers Si[(CH2)3SiMe(CH2CH2CH2SH)2]4(G(1)SH-8), G(2)SH-16, G(1)SH-12, and G(2)SH-36. Reactions of 3 with [M(acac)(diolefin)](M = Rh, Ir; diolefin = 1,5-cyclooctadiene, 2,5-norbornadiene) gave the compounds of the type [M2(mu-Me2Si[(CH2)3S]2)(diolefin)2]n. These diolefin complexes are octanuclear (n= 4) in solution while the complex [Rh2(mu-Me2Si[(CH2)3S]2)(cod)2]n(5) is tetranuclear in the solid state. The structure of 5, solved by X-ray diffraction methods, consists of a 20-membered metallomacrocycle formed by two dimethylbis(propylthiolate)silane moieties bridging four fragments Rh(cod) in a mu2 fashion through the sulfur atoms. Treatment of [Rh(acac)(CO)2] with 3 gave [Rh2(mu-Me2Si[(CH2)3S]2)(CO)4]n, which is a mixture of tetra (n= 2) and octanuclear (n= 4) complexes in a 2 : 1 ratio in solution, while the related complex [Rh2(mu-Me2Si[(CH2)3S]2)(CO)2(PPh3)2]2 is tetranuclear. Reactions of [Rh(acac)(L-L)](L-L = cod, (CO)2, (CO)(PPh3)) with 4 and the dendrimers G(1)SH-8, G(2)SH-16, and G(1)SH-12, gave microcrystalline solids of formulae [Rh3(MeSi[(CH2)3S]3)(L-L)3]n, [Si[(CH2)3SiMe{(CH2)3SRh(cod)}2]4]n([G(1)Rh(cod)-8]n), [Si[(CH2)3Si{(CH2)3SRh(cod)}3]4]n([G(1)Rh(cod)-12]n), etc., which presumably are tridimensional coordination polymers.  相似文献   

17.
Reaction of the d9-d9 Ni(I) monochloride dimer, [(IPr)Ni(mu-Cl)]2 (1), with NaN(SiMe3)2 and LiNHAr (Ar = 2,6-diisopropylphenyl) gives the novel monomeric, 2-coordinate Ni(I) complexes (IPr)Ni{N(SiMe3)2} (2) and (IPr)Ni(NHAr) (3). Reaction of 2 with Cp2Fe+ results in its 1-e- oxidation followed by beta-Me elimination to give a base-stabilized iminosilane complex [(IPr)Ni(CH3){kappa1-N(SiMe3)=SiMe2.Et2O}][BArF4] (6). Oxidation of 3 gives [(IPr)Ni(eta3-NHAr)(THF)][BArF4] (4), which upon loss of THF affords dimeric [(IPr)Ni(N,eta3:NHC6iPr2H3)]2[BArF4]2 (5).  相似文献   

18.
High yield synthesis of trans-[(Me(3)P)(OC)(3)Fe = BDur] (Dur, "Duryl" = 2,3,4,6-Me(4)C(6)H) is achieved by salt elimination and subsequent liberation of trimethylsilylbromide from K[Fe(CO)(3)(PMe(3))SiMe(3)] and Br(2)BDur.  相似文献   

19.
Reaction of the known germylene Ge[N(SiMe3)2]2 and a new heterocyclic variant Ge[(NMes)2(CH)2] with [L(Me2)Cu]2 (L(Me2) = the beta-diketiminate derived from 2-(2,6-dimethylphenyl)amino-4-(2,6-dimethylphenyl)imino-2-pentene) yielded novel Cu(I)-Ge(II) complexes L(Me2)Cu-Ge[(NMes)2(CH)2] (1a) and L(Me2)Cu-Ge[N(SiMe3)2]2 (1b), which were characterized by spectroscopy and X-ray crystallography. The lability of the Cu(I)-Ge(II) bond in 1a and b was probed by studies of their reactivity with benzil, PPh3, and a N-heterocyclic carbene (NHC). Notably, both complexes are cleaved rapidly by PPh3 and the NHC to yield stable Cu(I) adducts (characterized by X-ray diffraction) and the free germylene. In addition, the complexes are highly reactive with O2 and exhibit chemistry which depends on the bound germylene. Thus, oxygenation of 1a results in scission and formation of thermally unstable L(Me2)CuO2, which subsequently decays to [(L(Me2)Cu)2(mu-O)2], while 1b yields L(Me2)Cu(mu-O)2Ge[N(SiMe3)2]2, a novel heterobimetallic intermediate having a [Cu(III)(mu-O)2Ge(IV)]3+ core. The isolation of the latter species by direct oxygenation of a Cu(I)-Ge(II) precursor represents a new route to heterobimetallic oxidants comprising copper.  相似文献   

20.
A series of (Me3TACN)FeII derivatives with soft coligands have been investigated, where Me3TACN is N,N',N"-trimethyl-1,4,7-triazacyclononane. Treatment of Me3TACN with FeCl2 afforded a compound with the empirical formula (Me3TACN)FeCl2 (1). Compound 1, which is a versatile precursor reagent, was shown by single-crystal X-ray diffraction to be the salt [(Me3TACN)2Fe2Cl3][(Me3TACN)FeCl3], containing isolated [(Me3TACN)2Fe2Cl3]+ and [(Me3TACN)FeCl3]- subunits. Treatment of 1 with NaBPh4 gave the known [(Me3TACN)2Fe2Cl3]BPh4, while the addition of Me3TACN to FeCl4(2-) gave [(Me3TACN)FeCl3]-. Oxygenation of 1 afforded [(Me3TACN)FeCl2]2(mu-O), which was shown crystallographically to be centrosymmetric with a pair of distorted octahedral Fe centers. The Fe-N bond trans to the Fe-O bond is elongated by 02 A relative to the other Fe-N distances. Solutions of 1 and thiolates absorb CO to give [(Me3TACN)Fe(SPh)(CO)2]BPh4 and (Me3TACN)Fe(S2C2H4)(CO) (nu CO = 1896 cm-1). Treatment of 1 with excess CN- afforded [(Me3TACN)Fe(CN)3]-, isolated as its PPh4+ salt 5. Crystallographic and spectroscopic studies show that 5 is low spin with a C3v structure; its Fe-N distances contracted by 023 A relative to those in [(Me3TACN)FeCl3]-. Aqueous solutions of 1 bind CO upon the addition of CN- to produce (Me3TACN)Fe(CN)2(CO) (6) Analogous to 6 is (Me3TACN)Fe(CN)2(CNMe), prepared by methylation of 5. The metastable dicarbonyl [(Me3TACN)FeI(CO)2]I was prepared by treatment of FeI2(CO)4 with Me3TACN and was crystallographically characterized as its BPh4- salt. Values of E1/2 for [(Me3TACN)FeCl3]-, 5, and 6 are -0409, -0640, and 0533 V vs Fc/Fc+, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号