首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises when solving the Neumann boundary value problem for the Laplace equation with the use of the representation of the solution in the form of a double layer potential. We study the case in which an exterior or interior boundary value problem is solved in a domain whose boundary is a smooth closed surface and the integral equation is written out on that surface. For the numerical solution of the integral equation, the surface is approximated by spatial polygons whose vertices lie on the surface. We construct a numerical scheme for solving the integral equation on the basis of such an approximation to the surface with the use of quadrature formulas of the type of the method of discrete singularities with regularization. We prove that the numerical solutions converge to the exact solution of the hypersingular integral equation uniformly on the grid.  相似文献   

2.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises in the solution of the Neumann boundary value problem for the Laplace equation with a representation of a solution in the form of a double-layer potential. We consider the case in which the interior or exterior boundary value problem is solved in a domain; whose boundary is a smooth closed surface, and an integral equation is written out on that surface. For the integral operator in that equation, we suggest quadrature formulas like the method of vortical frames with a regularization, which provides its approximation on the entire surface for the use of a nonstructured partition. We construct a numerical scheme for the integral equation on the basis of suggested quadrature formulas, prove an estimate for the norm of the inverse matrix of the related system of linear equations and the uniform convergence of numerical solutions to the exact solution of the hypersingular integral equation on the grid.  相似文献   

3.
A Cauchy type singular integral equation can be numerically solved by the use of an appropriate numerical integration rule and the reduction of this equation to a system of linear algebraic equations, either directly or after the reduction of the Cauchy type singular integral equation to an equivalent Fredholm integral equation of the second kind. In this paper two fundamental theorems on the equivalence (under appropriate conditions) of the aforementioned methods of numerical solution of Cauchy type singular integral equations are proved in sufficiently general cases of Cauchy type singular integral equations of the second kind.  相似文献   

4.
In this paper, a new integral equation of electrostatics is proposed as an integral form of a basic dielectric continuum model, which is traditionally represented in a form of Poisson differential equation. As an application in protein simulations, the new integral equation is reduced to a second kind Fredholm boundary integral equation on the interface between the solute and solvent regions for a piecewise constant permittivity function, together with two new integral expressions for the electrostatics within the solute and solvent regions. The new integral equation and expressions work for any charge problem over the whole space (including the one with charges on the interface). This valuable feature is verified numerically for a dielectric sphere model with a point charge inside, outside, or on the sphere in this paper.  相似文献   

5.
By using a simple layer potential and an angular potential, one can reduce the problem with a directional derivative for the Laplace equation outside several open curves on the plane to a uniquely solvable system of integral equations that consists of an integral equation of the second kind and additional integral conditions. The kernel in the integral equation of the second kind contains singularities and can be represented as a Cauchy singular integral. We suggest a numerical method for solving a system of integral equations. Quadrature formulas for the logarithmic and angular potentials are represented. The quadrature formula for the logarithmic potential preserves the property of its continuity across the boundary (open curves).  相似文献   

6.
We study the numerical solution of a linear hypersingular integral equation arising when solving the Neumann boundary value problem for the Laplace equation by the boundary integral equation method with the solution represented in the form of a double layer potential. The integral in this equation is understood in the sense of Hadamard finite value. We construct quadrature formulas for the integral occurring in this equation based on a triangulation of the surface and an application of the linear approximation to the unknown function on each of the triangles approximating the surface. We prove the uniform convergence of the quadrature formulas at the interpolation nodes as the triangulation size tends to zero. A numerical solution scheme for this integral equation based on the suggested quadrature formulas and the collocation method is constructed. Under additional assumptions about the shape of the surface, we prove a uniform estimate for the error in the numerical solution at the interpolation nodes.  相似文献   

7.
Using the integral equation method we study solutions of boundary value problems for the Stokes system in Sobolev space H 1(G) in a bounded Lipschitz domain G with connected boundary. A solution of the second problem with the boundary condition $\partial {\bf u}/\partial {\bf n} -p{\bf n}={\bf g}$ is studied both by the indirect and the direct boundary integral equation method. It is shown that we can obtain a solution of the corresponding integral equation using the successive approximation method. Nevertheless, the integral equation is not uniquely solvable. To overcome this problem we modify this integral equation. We obtain a uniquely solvable integral equation on the boundary of the domain. If the second problem for the Stokes system is solvable then the solution of the modified integral equation is a solution of the original integral equation. Moreover, the modified integral equation has a form f?+?S f?=?g, where S is a contractive operator. So, the modified integral equation can be solved by the successive approximation. Then we study the first problem for the Stokes system by the direct integral equation method. We obtain an integral equation with an unknown ${\bf g}=\partial {\bf u}/\partial {\bf n} -p{\bf n}$ . But this integral equation is not uniquely solvable. We construct another uniquely solvable integral equation such that the solution of the new eqution is a solution of the original integral equation provided the first problem has a solution. Moreover, the new integral equation has a form ${\bf g}+\tilde S{\bf g}={\bf f}$ , where $\tilde S$ is a contractive operator, and we can solve it by the successive approximation.  相似文献   

8.
In this article a method is presented, which can be used for the numerical treatment of integral equations. Considered is the Fredholm integral equation of second kind with continuous kernel, since this type of integral equation appears in many applications, for example when treating potential problems with integral equation methods.The method is based on the approximation of the integral operator by quasi-interpolating the density function using Gaussian kernels. We show that the approximation of the integral equation, gained with this method, for an appropriate choice of a certain parameter leads to the same numerical results as Nyström’s method with the trapezoidal rule. For this, a convergence analysis is carried out.  相似文献   

9.
黄玉笙  林良裕 《数学学报》2004,47(4):703-710
利用积分变换技巧,作者给出了C~n中闭光滑可定向流形上一个新的Bochner-Martinelli型积分的高阶偏导数的奇异积分的Hadamard主值,获得了高阶奇异积分的Plemelj公式和合成公式,还讨论了相应的变系数线性微分积分方程的正则化,证明其可转化为一类等价的Fredholm方程。并且指出其特征方程当给出一组适当的边值条件时,在L~*中存在唯一解。  相似文献   

10.
D. Medková 《Acta Appl Math》2011,116(3):281-304
A weak solution of the Neumann problem for the Stokes system in Sobolev space is studied in a bounded Lipschitz domain with connected boundary. A solution is looked for in the form of a hydrodynamical single layer potential. It leads to an integral equation on the boundary of the domain. Necessary and sufficient conditions for the solvability of the problem are given. Moreover, it is shown that we can obtain a solution of this integral equation using the successive approximation method. Then the consequences for the direct boundary integral equation method are treated. A solution of the Neumann problem for the Stokes system is the sum of the hydrodynamical single layer potential corresponding to the boundary condition and the hydrodynamical double layer potential corresponding to the trace of the velocity part of the solution. Using boundary behavior of potentials we get an integral equation on the boundary of the domain where the trace of the velocity part of the solution is unknown. It is shown that we can obtain a solution of this integral equation using the successive approximation method.  相似文献   

11.
The paper considers the solution of the boundary value problem (BVP) consisting of the Helmholtz equation in the region D with a rigid boundary condition on ∂D and its reformulation as a boundary integral equation (BIE), over an infinite cylindrical surface of arbitrary smooth cross-section. A boundary integral equation, which models three-dimensional acoustic scattering from an infinite rigid cylinder, illustrates the application of the above results to prove existence of solution of the integral equation and the corresponding boundary value problem.  相似文献   

12.
A method for removing the domain or volume integral arising in boundary integral formulations for linear inhomogeneous partial differential equations is presented. The technique removes the integral by considering a particular solution to the homogeneous partial differential equation which approximates the inhomogeneity in terms of radial basis functions. The remainder of the solution will then satisfy a homogeneous partial differential equation and hence lead to an integral equation with only boundary contributions. Some results for the inhomogeneous Poisson equation and for linear elastostatics with known body forces are presented.  相似文献   

13.
无界区域抛物方程自然边界元方法   总被引:1,自引:0,他引:1       下载免费PDF全文
本文应用自然边界元方法求解无界区域抛物型初边值问题。首先将控制方程对时间进行离散化,得到关于时间步长离散化的椭圆型问题。通过Fourier展开,导出相应问题的自然积分方程和Poisson积分公式。研究了自然积分算子的性质,并讨论了自然积分方程的数值解法,最后给出数值例子。从而解决了抛物型问题的自然边界归化和自然边界元方法。  相似文献   

14.
We consider a linear integral equation with a supersingular integral treated in the sense of the Hadamard finite value, which arises in the solution of the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a doublelayer potential. We consider the case in which the exterior boundary value problem is solved outside a plane surface (a screen). For the integral operator in the above-mentioned equation, we suggest quadrature formulas of the vortex loop method with regularization, which provide its approximation on the entire surface when using an unstructured partition. In the problem in question, the derivative of the unknown density of the double-layer potential, as well as the errors of quadrature formulas, has singularities in a neighborhood of the screen edge. We construct a numerical scheme for the integral equation on the basis of the suggested quadrature formulas and prove an estimate for the norm of the inverse matrix of the resulting system of linear equations and the uniform convergence of the numerical solutions to the exact solution of the supersingular integral equation on the grid.  相似文献   

15.
In the paper we study the existence of solutions of a nonlinear quadratic Volterra integral equation of fractional order. This equation is considered in the Banach space of real functions defined, continuous and bounded on an unbounded interval. Moreover, we show that solutions of this integral equation are locally attractive.  相似文献   

16.
Methods are developed for the localization of neuron brain sources with the potential recorded as an electroencephalogram (EEG). A boundary-value problem for a Poisson equation is considered. A boundary Fredholm integral equation of the second kind is deduced. A method for numerically solving an integral equation is proposed, and the results from a number of computing experiments are given.  相似文献   

17.
We study the solvability of a nonlinear quadratic integral equation of Hammerstein type. Using the technique of measures of noncompactness we prove that this equation has solutions on an unbounded interval. Moreover, we also obtain an asymptotic characterization of these solutions. Several special cases of this integral equation are discussed and applications to real world problems are indicated.  相似文献   

18.
The problem of scattering of two dimensional surface water waves by a partially immersed rigid plane vertical barrier in deep water is re-examined. The associated mixed boundary value problem is shown to give rise to an integral equation of the first kind. Two direct approximate methods of solution are developed and utilized to determine approximate solutions of the integral equation involved. The all important physical quantity, called the Reflection Coefficient, is evaluated numerically, by the use of the approximate solution of the integral equation. The numerical results, obtained in the present work, are found to be in an excellent agreement with the known results, obtained earlier by Ursell (1947), by the use of the closed form analytical solution of the integral equation, giving rise to rather complicated expressions involving Bessel functions.  相似文献   

19.
本文建立非线性非完整系统相对于非惯性系动力学的积分理论.首先,由这种相对运动的Routh方程给出系统的第一积分;其次,分别利用系统的循环积分、能量积分降阶运动方程,得到推广的Routh方程和推广的Whittaker方程;再次,建立这类系统运动的正则方程和变分方程,并由第一积分构造系统的积分不变量;然后,给出系统的Poincare-Cartan型积分变量关系和积分不变量.最后,给出一系列推论.  相似文献   

20.
The dynamic contact problem of the motion of a flat punch on the boundary of an elastic half-plane is considered. During motion, the punch deforms the elastic half-plane, penetrating it in such a manner that its base remains parallel to the boundary of the half-plane at each instant of time. In movable coordinates connected to the moving punch, the contact problem reduces to solving a two-dimensional integral equation, whose two-dimensional kernel depends on the difference between the arguments for each of the variables. An approximate solution of the integral equation of the problem is constructed in the form of a Neumann series, whose zeroth term is represented in the form of the superposition of the solutions of two-dimensional integral equations on the coordinate semiaxis minus the solution of the integral equation on the entire axis. This approach provides a way to construct the solution of the two-dimensional integral equation of the problem in four velocity ranges of motion of the punch, which cover the entire spectrum of its velocities, as well as to perform a detailed analysis of the special features of the contact stresses and vertical displacements of the free surface on the boundary of the contract area. An approximate method for solving the integral equation, which is based on a special approximation of the integrand of the kernel of the integral equation in the complex plane, is proposed for obtaining effective solutions of the problem that do not contain singular quadratures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号