首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents results of experimental and numerical analyses of in-plane waves propagating in a 5 mm-thick steel plate in the frequency range of 120–300 kHz. For such a thickness/frequency ratio, extensional waves reveal dispersive character. To model in-plane wave propagation taking into account the thickness-stretch effect, a novel 2D spectral element, based on the Kane–Mindlin theory, was formulated. An application of in-plane waves to damage detection is also discussed. Experimental investigations employing a laser vibrometer demonstrated that the position and length of a defect can precisely be identified by analysing reflected and diffracted waves.  相似文献   

2.
In an estuary, a tidal bore is a hydraulic jump in translation generated at the leading edge of the flood tide during the early flood tide under spring macrotidal conditions in a narrow funnelled channel. After formation, the bore is traditionally analysed as a hydraulic jump in translation and its leading edge is characterised by a breaking roller for Fr1 > 1.3–1.5. Herein new unsteady experiments were conducted to investigate in details the upstream propagation of breaking bore roller. The toe perimeter shape fluctuated rapidly with transverse distance and time. A characteristic transverse wave length of the toe perimeter was observed. Both the standard deviation of toe perimeter location and characteristic transverse wave length were comparable to field observations. The celerity of the roller toe fluctuated rapidly with time and space. The instantaneous longitudinal profile of the roller free-surface showed significant temporal and spatial fluctuations. Although the bore propagation may be analysed in an integral form in first approximation, the rapid fluctuations in roller toe perimeter and free-surface profiles indicated a strongly three-dimensional turbulent flow motion.  相似文献   

3.
This paper examines the shock wave dynamics of a biconvex aerofoil in transonic flight during acceleration and retardation. The aerofoil has a cord length of 1 m and air at infinity is at 101.325 kPa and 300 K. Using Fluent as the CFD software, constant velocity (steady state) simulations were conducted at transonic Mach numbers. The aerofoil was then accelerated at 1041m/s2 (106 g), starting at Mach 0.1, and decelerated at −1041m/s2, starting at Mach 1.6, through the same range of Mach numbers using time-dependent (unsteady) simulations. Significant differences were found in the transonic region between the steady and the unsteady aerodynamic forces. Analysis of the flow field in this region showed that acceleration-dependent variations in the position of the shock wave on the surfaces of the aerofoil were the main reason for this. As very high accelerations were used in order to emphasize differences, which do not have many practical applications, simulations using accelerations lower than 9 g were also conducted in order to confirm the results. The acceleration-dependent behaviour of other shock waves around the aerofoil, such as the bow shock in front of the aerofoil and the trailing wave were also examined. The trailing wave followed behind the aerofoil changing position with different accelerations at the same Mach number.   相似文献   

4.
A flexible, high-frame rate particle image velocimetry technique that can be applied to operating internal combustion engines in highly luminous combustion situations was developed. Two high-repetition rate diode-pumped Nd:YAG lasers operated at 355 nm and a CMOS camera were used to devise a system that allowed measurements of velocity fields near the spark plug in a firing engine at a rate of 6 kHz for 500 consecutive cycles. The 6 kHz acquisition rate enables recording one velocity field every other crank angle at 2,000 RPM engine speed. Sample results such as individual and average flow fields and kinetic energy evolutions are presented.  相似文献   

5.
A series of plate impact experiment with soda-lime glass specimens in different thicknesses are conducted on a 57 mm diameter one-stage gas gun in order to further investigate the so-called failure wave phenomena under dynamic compressive loads. With the aid of the VISAR technique, the failure wave trajectory is explored, which shows that, apart from a constant failure wave velocity, an initial delay time for the failure wave to initiate at the impact surface of the specimen should be taken into consideration. Comparing our experimental results with the available data presented in the previous open literature shows that, with the increasing magnitude of the impact loads, the failure wave velocity increases and the initial delay time decreases. Moreover, the derived initial delay time τ = 0.694 μs for the soda-lime glass specimens under the impact stress of 4.7 GPa is the same order of magnitude as that of the incubation time proposed by Morozov and Petrov (2000), which shows that the incubation time plays a dominant role in the total initial delay time, and it also provides an reasonable explanation to the fundamental question pointed out by Clifton (Appl Mech Rev 46: 540-546, 1993).  相似文献   

6.
To better understand the failure characteristics of lead titanate zirconate (PZT) piezoelectric ceramics, in-situ measurements of displacement and crack growth rates were conducted during high cycle fatigue testing, e.g., 5 kHz. A commercial PZT ceramic (used in a buzzer) was employed as the specimen. To examine the failure characteristics, two newly proposed systems were used: (i) a high speed camera system and (ii) a condenser microphone system. The former system consisted of two high speed cameras with an analytical system, which could measure the displacement of the PZT ceramic during the cyclic loading. The maximum displacement value of the ceramic was found to be approximately 20 μm at 0.5 kHz. The three-dimensional shape of the PZT ceramic during cyclic loading could be clearly observed. With the latter system, the displacement intensity arising from the ceramic vibration was detected continuously. It was found that the crack growth rate was not correlated with the fatigue frequency due to the resonance caused by the ceramic oscillation. There is a linear relationship between the crack growth rate and sonar intensity. On the basis of the crack growth behavior, the failure characteristics of the PZT ceramic could be clearly determined.  相似文献   

7.
The aim is to design a layered metamaterial with high attenuation coefficient and high in-plane stiffness-to-density ratio using homogenization to calculate and optimize the dynamic effective stiffness and mass density of layered periodic composites (phononic layers) over a broad frequency band. This is achieved by: (1) minimizing the frequency range of the first pass band, (2) maximizing the frequency range of the stop band, and (3) creating local resonance over the second pass band. To verify the theoretical calculation, laboratory samples were fabricated and their attenuation coefficient were measured and compared with the theoretical results. It is observed that over 4–20 kHz frequency range the attenuation per unit length in the optimally designed composite can exceed 500 dB/m; which increases with increasing frequency. A dynamic Ashby chart, depicting attenuation coefficient vs. in-plane stiffness-to-density ratio, is presented for various engineering materials and is compared with the fabricated metamaterial to show the significance of our design. This method can be used in variety of applications for stress wave management, e.g., in addition to match the impedance of the resulting composite to that of its surrounding medium to minimize (or essentially eliminate) stress wave reflection.  相似文献   

8.
为了增加兰姆波测试信号特征提取的精度,降低噪声的影响,信号的预处理是必要的.本文采用一发一收兰姆波测试技术,在含有人工槽型缺陷的3mm厚铝板上进行了实验.选择带通无限长脉冲响应滤波器对兰姆波信号进行降噪.考虑到兰姆波的激发频率为250kHz,ⅡR滤波器的通带设置为160~330kHz.采用Hilbert变换获取滤波后信号的包络,结果显示,与滤波前兰姆波信号的包络相比,滤波后信号的包络更加平滑和清晰,各个波包的峰值可以唯一确定,为后续兰姆波信号的走时提取提供了方便.在此基础上,根据入射波与S0反射波峰值之间的时间间隔计算S0模式的群速度,结果与理论值较为接近,由此显示了滤波处理在兰姆波测试信号分析中的重要作用.  相似文献   

9.
This paper presents the results of an experimental study of the unsteady nature of a hypersonic separated turbulent flow. The nomimal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of 3.5×107/m. The separated flow was generated using finite span forward facing steps. An array of flush mounted high spatial resolution and fast response platinum film resistance thermometers was used to make multi-channel measurements of the fluctuating surface heat trtansfer within the separated flow. Conditional sampling analysis of the signals shows that the root of separation shock wave consists of a series of compression wave extending over a streamwise length about one half of the incoming boundary layer thickness. The compression waves converge into a single leading shock beyond the boundary layer. The shock structure is unsteady and undergoes large-scale motion in the streamwise direction. The length scale of the motion is about 22 percent of the upstream influence length of the separation shock wave. There exists a wide band of frequency of oscillations of the shock system. Most of the frequencies are in the range of 1–3 kHz. The heat transfer fluctuates intermittently between the undisturbed level and the disturbed level within the range of motion of the separation shock wave. This intermittent phenomenon is considered as the consequence of the large-scale shock system oscillations. Downstream of the range of shock wave motion there is a separated region where the flow experiences continuous compression and no intermittency phenomenon is observed. The project supported by National Natural Science Foundation of China  相似文献   

10.
Characterization of shock accelerometers using davies bar and strain-gages   总被引:4,自引:0,他引:4  
This paper proposes a novel method for evaluating the dynamic characteristics of shock accelerometers under high acceleration levels and a wide frequency bandwidth. High accelerations of 103∼105m/s2 can be generated by the reflection of an elastic wave pulse propagating in a metal bar known as the Davies bar. The elastic wave pulse is produced by the collision of a projectile against one end of the bar, and is detected by straingages. The accelerometer to be characterized is attached to the other end of the bar. The one-dimensional theory of elastic waves enables the derivation of an input acceleration to the accelerometer from the measured strain. The dispersion of the elastic waves caused by the lateral inertia of the bar is compensated for by using a two-dimensional analytical solution. This method was validated by an experiment characterizing a piezoelectric-type accelerometer within the frequency band approximately 1 kHz∼70 kHz.  相似文献   

11.
12.
This paper examines the effects of small upward inclinations on the formation of roll waves and the properties of fully developed roll waves at high pressure conditions. A total of 984 experiments were conducted at six positive pipe inclinations θ = 0.00°, 0.10°, 0.25°, 1.00°, 2.50° and 5.00° using a 25 m long 10 cm i.d. pipe. Sulfur hexafluoride (SF6) was used at 8 bara giving a gas density of 50 kg/m3. Two independent mechanisms for the formation of roll waves were identified; (1) interaction between 2D shallow water waves and (2) a visible long wavelength instability of the stratified layer. Viscous long wavelength linear stability analysis predicted the critical liquid flow rate and liquid height for the initiation of roll waves when roll waves were formed due to the second mechanism. A simple equation from shallow water wave theory agreed with measurements for critical liquid flow rate when roll waves were formed due to the first mechanism. Shallow water wave speed agreed with critical wave speeds at transition and nonlinear wave speeds for fully developed roll waves in certain cases. The increase in interfacial friction due to the presence of large waves was compared with models from the literature.  相似文献   

13.
The present study investigated fluid dynamics and heat transfer of viscous pure liquids in a falling film evaporator. This is of special benefit as it avoids mass transfer effects on the evaporation behaviour. Experiments at a single-tube glass falling film evaporator were conducted. It allowed a full-length optical film observation with a high-speed camera. Additionally the evaporator was equipped with a slotted weir distribution device. Test fluids provided viscosities ranging from μ = 0.3 to 41 mPa s. The Reynolds number was between 0.7 and 1,930. Surface evaporation and the transition to nucleate boiling were studied to gain information about the film stability at maximum wall superheat. A reliable database for laminar and laminar-wavy viscous single component films was created. The experimental results show a significant enhancement in the wave development due to the film distribution. A wavy flow with different wave velocities was superposed to the film in each liquid load configuration without causing a film breakdown or dry spots on the evaporator tube. It was found that nucleate boiling can be allowed without causing film instabilities over a significant range of wall superheat.  相似文献   

14.
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.  相似文献   

15.
A large schlieren system with exceptional sensitivity and a high-speed digital camera are used to visualize loud sounds and a variety of common phenomena that produce weak shock waves in the atmosphere. Frame rates varied from 10,000 to 30,000 frames/s with microsecond frame exposures. Sound waves become visible to this instrumentation at frequencies above 10 kHz and sound pressure levels in the 110 dB (6.3 Pa) range and above. The density gradient produced by a weak shock wave is examined and found to depend upon the profile and thickness of the shock as well as the density difference across it. Schlieren visualizations of weak shock waves from common phenomena include loud trumpet notes, various impact phenomena that compress a bubble of air, bursting a toy balloon, popping a champagne cork, snapping a wooden stick, and snapping a wet towel. The balloon burst, snapping a ruler on a table, and snapping the towel and a leather belt all produced readily visible shock-wave phenomena. In contrast, clapping the hands, snapping the stick, and the champagne cork all produced wave trains that were near the weak limit of visibility. Overall, with sensitive optics and a modern high-speed camera, many nonlinear acoustic phenomena in the air can be observed and studied.  相似文献   

16.
A novel concept for using hybrid targets to create multi-keV X-ray sources was tested on the GEKKO XII facility of the OSAKA University and on the OMEGA facility of the University of Rochester. The sources were made via laser irradiation of a titanium foil placed at the end of a plastic cylinder, filled with a very low-density (2 and 5 mg/cm3) silicon-dioxide aerogel that was designed to control the longitudinal expansion of the titanium plasma. Preliminary calculations were used to determine optimal conditions for the aerogel density, cylinder diameter and length that maximize multi-keV X-ray emission. The X-ray emission power was measured on OMEGA using absolutely calibrated broad-band, diode-based CEA diagnostics, in addition to high resolution crystal spectrometers. On GEKKO XII, the heat wave propagation velocity in the aerogel was also measured with an X-ray framing camera. The advantage of using the thermal wave generated in the aerogel to heat a solid material to increase the conversion efficiency has not been fully demonstrated in these experiments. However, it was shown that a 5 mg/cm3 aerogel placed in front of a titanium foil can improve the x-ray conversion efficiency with respect to the case of 2 mg/cm3 for some target diameter and length.  相似文献   

17.
对单轴压缩下两种密度的泡沫铝进行了三种频率(50kHz、200kHz和300kHz)的声波测试,同时运用CCD对实验进行跟踪拍摄。分析结果表明:P波波速随载荷增大而增加,当载荷达到屈服力时,波速有所下降;S波有相同趋势,但变化比P波小。应用数字图像相关方法对CCD拍摄图片进行处理,得到不同载荷阶段下泡沫铝的全场应变;采用Weibull函数对全场应变分布进行拟合,研究了Weibull分布参数随载荷变化的规律。由此,初步建立了载荷作用下材料结构变化与波速的关系。此研究对于声波探测领域有很好的指导意义。  相似文献   

18.
Particle tracer response across shocks measured by PIV   总被引:1,自引:0,他引:1  
The experimental approach used for the evaluation of the particle response time across a stationary shock wave is assessed by means of PIV measurements. The study focuses on the experimental requirements for a reliable and unbiased measurement of the particle response time τ p and length ξ p based on a single-exponent decaying law. A numerical simulation of the particle response experiment returns the parameters governing the measurement: namely the normalized spatial and temporal resolution, shock strength, and digital resolution. Representing the velocity decay in logarithmic coordinates it is shown that measurements performed with laser pulse separation time up to τ p and interrogation window up to ξ p still yield unbiased results for the particle response. A set of experiments on the particle response across a planar oblique shock wave was conducted to verify the results from the numerical assessment. Liquid droplets of DEHS and solid tracer particles of silicon and titanium dioxide with different primary crystal size are compared. The resulting temporal response ranges from 2 to 3 μs, corresponding to values commonly reported in literature, to almost 0.3 μs when particles are properly dehydrated and a filter is applied before injection into the wind tunnel. It is the first experimental evidence of particle tracers with a measured response time lower than 0.4 μs. The same procedure is applied to attempt the measurement of individual particle tracers by particle tracking velocimetry to estimate the spread in the distribution of tracer time response. The latter analysis is limited by the particle image tracking precision error, which biases the results introducing a wider broadening of the particle velocity distribution.  相似文献   

19.
Interfacial wave parameters, in this case the frequency, height, velocity, and slope, were investigated experimentally in a horizontal air-water stratified flow. Experiments were conducted with a parallel wire conductance sensor and PIV visualization in a rectangular channel, of which the width and height are 40 mm and 50 mm, respectively. In the experiments, the flow condition covered the liquid Reynolds number Rel range of 450 to 3540 and the gas Reynolds number Reg range of 14,000 to 70,000. The results revealed that the observed wave types according to the flow conditions in the rectangular channel are similar to those in a horizontal pipe. The frequency, height, and slope of the interfacial wave show complicated tendencies according to the combination of Reg and Rel, which affects the coalescence and breakup of the wave. Specifically, the wave height and wave slope have opposite tendencies regarding the criterion of Reg = 34,000. For cases in which Reg  ≥  34,000, the interfacial drag force significantly affects the height and slope of the disturbance wave. In contrast, for Reg < 34,000, the growth of the wave has an important effect on the wave parameters. Finally, new empirical correlations for the frequency, height, and slope of the interfacial wave were proposed for application to the development of a droplet entrainment model in a horizontal stratified flow.  相似文献   

20.
In the work an approach to avoid a circumferential temperature distribution existing during nucleate pool boiling on a horizontal cylinder within low heat flux densities is presented. The idea of the approach is local heat transfer enhancement by a porous layer application on a part of the heating surface. An experiment on nucleate pool boiling heat transfer from horizontal cylinders to saturated R141b and water under atmospheric pressure is reported. Experiments have been conducted using stainless steel tubes with the outside diameter between 8 mm and 23 mm with the active length of 250 mm. The outside surface of the tubes was smooth or partially coated with a porous metallic layer. In particular, measurements of inside circumferential temperature distribution have been performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号