首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The reaction of 2‐(benzothiazol‐2‐ylmethyl)‐1,3‐thiazol‐4(5H)‐one 1 with α,β‐cinnamonitrile derivatives 2a‐n have been reported.  相似文献   

2.
α,β‐Unsaturated N‐benzenesulfonyl imine 1 was treated with 1.1 eq methyllithium to afford 1,2‐addition adduct as a sole product. However, when compound 1 was treated with 2 eq MeLi, 1,2‐addition product, benzenesulfonamide derivative 3 and 2H‐1,2‐benzothiazine 1,1‐dioxide derivatives 4 and 5 were isolated.  相似文献   

3.
2, 4‐Dimethylpenta‐1, 3‐diene and 2, 4‐Dimethylpentadienyl Complexes of Rhodium and Iridium The complexes [(η4‐C7H12)RhCl]2 ( 1 ) (C7H12 = 2, 4‐dimethylpenta‐1, 3‐diene) and [(η4‐C7H12)2IrCl] ( 2 ) were obtained by interaction of C7H12 with [(η2‐C2H4)2RhCl]2 and [(η2‐cyclooctene)2IrCl]2, respectively. The reaction of 1 or 2 with CpTl (Cp = η5‐C5H5) yields the compounds [CpM(η4‐C7H12)] ( 3a : M = Rh; 3b : M = Ir). The hydride abstraction at the pentadiene ligand of 3a , b with Ph3CBF4 proceeds differently depending on the solvent. In acetone or THF the “half‐open” metallocenium complexes [CpM(η5‐C7H11)]BF4 ( 4a : M = Rh; 4b : M = Ir) are obtained exclusively. In dichloromethane mixtures are produced which additionally contain the species [(η5‐C7H11)M(η5‐C5H4CPh3)]BF4 ( 5a : M = Rh; 5b : M = Ir) formed by electrophilic substitution at the Cp ring, as well as the η3‐2, 4‐dimethylpentenyl compound [(η3‐C7H13)Rh{η5‐C5H3(CPh3)2}]BF4 ( 6 ). By interaction of 2, 4‐dimethylpentadienyl potassium with 1 or 2 the complexes [(η4‐C7H12)M(η5‐C7H11)] ( 7a : M = Rh; 7b : M = Ir) are generated which show dynamic behaviour in solution; however, attempts to synthesize the “open” metallocenium cations [(η5‐C7H11)2M]+ by hydride abstraction from 7a , b failed. The new compounds were characterized by elemental analysis and spectroscopically, 4b and 5a also by X‐ray structure analysis.  相似文献   

4.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

5.
Four aluminum alkyl compounds, [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlMe2] ( 1 ), [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlEt2] ( 2 ), [CH{(CH3)CN‐2‐iPrC6H4}2AlMe2] ( 3 ), and [CH{(CH3)CN‐2‐iPrC6H4}2AlEt2] ( 4 ), bearing β‐diketiminate ligands [CH{(Me)CN‐2,4,6‐MeC6H2}]2 (L1H) and [CH{(Me)CN‐2‐iPrC6H4}]2 (L2H) were obtained from the reactions of trimethylaluminum, triethylaluminum with the corresponding β‐diketiminate, respectively. All compounds were characterized by 1H NMR and 13C NMR spectroscopy, single‐crystal X‐ray structural analysis, and elemental analysis. Compounds 1 – 4 were found to catalyze the ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) with good activity.  相似文献   

6.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

7.
β‐Bromo‐α,β‐unsaturated ketones are condensed with arylhydrazines to form hydrazones, which are in situ intramolecularly cyclized into 3‐substituted 1‐aryl‐1 H‐pyrazoles under a catalytic system of Pd(OAc)2/1,3‐bis(diphenylhosphino)propane (dppp)/NaOtBu. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The 2H‐1‐benzo/naphthopyran‐2‐one‐4‐yl (un)substituted phenyl‐1,3,4‐oxadiazoles has been synthesized by the oxidative cyclization of benzoic acid hydrazides formed in situ by the condensation of the respective 2H‐1‐benzo/naphthopyran‐2‐one‐4‐carboxaldehyde and (un)substituted monobenzoyl hydrazide in moderate yields. Also, spiro[indoline‐thiozolidine]‐2,4′‐diones has been syhthesized in a similar way from 3‐phenyl‐spiro[3H‐indoline‐3,2′‐thiozolidine]‐2,4′‐(1 H)dione monohydrazide and (un)substituted benzaldehydes.  相似文献   

9.
Unnatural cyclic α‐amino acids play an important role in the search for biologically active compounds and macromolecules. Enantiomers of natural amino acids with a d configuration are not naturally encoded, but can be chemically synthesized. The crystal structures of two enantiomers obtained by a method of stereoselective synthesis, namely (5R ,8S )‐8‐tert‐butyl‐7‐methoxy‐8‐methyl‐9‐oxa‐6‐azaspiro[4.5]decane‐2,10‐dione, (1), and (5S ,8R )‐8‐tert‐butyl‐7‐methoxy‐8‐methyl‐9‐oxa‐6‐azaspiro[4.5]decane‐2,10‐dione, (2), both C14H21NO4, were determined by X‐ray diffraction. Both enantiomers crystallize isostructurally in the space group P 21, with one molecule in the asymmetric unit and with the same packing motif. The crystal structures are stabilized by C—H…O hydrogen bonds, resulting in the formation of chains along the [100] and [010] directions. The conformation of the 3,6‐dihydro‐2H‐1,4‐oxazin‐2‐one fragment was compared with other crystal structures possessing this heterocyclic moiety. The comparison showed that the title compounds are not exceptional among structures containing the 3,6‐dihydro‐2H‐1,4‐oxazin‐2‐one fragment. The planar moiety was more frequently observed in derivatives in which this fragment was not condensed with other rings.  相似文献   

10.
11.
The synthesis, characterization and ε‐caprolactone polymerization behavior of lanthanide amido complexes stabilized by ferrocene‐containing N‐aryloxo functionalized β‐ketoiminate ligand FcCOCH2C(Me)N(2‐HO‐5‐But‐C6H3) (LH2, Fc = ferrocenyl) are described. The lanthanide amido complexes [LLnN(SiMe3)2(THF)]2 [Ln = Nd ( 1 ), Sm ( 2 ), Yb ( 3 ), Y ( 4 )] were synthesized in good yields by the amine elimination reactions of LH2 with Ln[N(SiMe3)2]3(µ‐Cl)Li(THF)3 in a 1:1 molar ratio in THF. These complexes were characterized by IR spectroscopy and elemental analysis, and 1H NMR spectroscopy was added for the analysis of complex 4 . The definitive molecular structures of complexes 1 and 3 were determined by X‐ray diffraction studies. Complexes 1 – 4 can initiate the ring‐opening polymerization of ε‐caprolactone with moderate activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Four structures of oxoindolyl α‐hydroxy‐β‐amino acid derivatives, namely, methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐methoxy‐2‐phenylacetate, C24H28N2O6, (I), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐ethoxy‐2‐phenylacetate, C25H30N2O6, (II), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐[(4‐methoxybenzyl)oxy]‐2‐phenylacetate, C31H34N2O7, (III), and methyl 2‐[(anthracen‐9‐yl)methoxy]‐2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐phenylacetate, C38H36N2O6, (IV), have been determined. The diastereoselectivity of the chemical reaction involving α‐diazoesters and isatin imines in the presence of benzyl alcohol is confirmed through the relative configuration of the two stereogenic centres. In esters (I) and (III), the amide group adopts an anti conformation, whereas the conformation is syn in esters (II) and (IV). Nevertheless, the amide group forms intramolecular N—H...O hydrogen bonds with the ester and ether O atoms in all four structures. The ether‐linked substituents are in the extended conformation in all four structures. Ester (II) is dominated by intermolecular N—H...O hydrogen‐bond interactions. In contrast, the remaining three structures are sustained by C—H...O hydrogen‐bond interactions.  相似文献   

13.
To complete our panorama in structure–activity relationships (SARs) of sandalwood‐like alcohols derived from analogues of α‐campholenal (= (1R)‐2,2,3‐trimethylcyclopent‐3‐ene‐1‐acetaldehyde), we isomerized the epoxy‐isopropyl‐apopinene (?)‐ 2d to the corresponding unreported α‐campholenal analogue (+)‐ 4d (Scheme 1). Derived from the known 3‐demethyl‐α‐campholenal (+)‐ 4a , we prepared the saturated analogue (+)‐ 5a by hydrogenation, while the heterocyclic aldehyde (+)‐ 5b was obtained via a Bayer‐Villiger reaction from the known methyl ketone (+)‐ 6 . Oxidative hydroboration of the known α‐campholenal acetal (?)‐ 8b allowed, after subsequent oxidation of alcohol (+)‐ 9b to ketone (+)‐ 10 , and appropriate alkyl Grignard reaction, access to the 3,4‐disubstituted analogues (+)‐ 4f,g following dehydration and deprotection. (Scheme 2). Epoxidation of either (+)‐ 4b or its methyl ketone (+)‐ 4h , afforded stereoselectively the trans‐epoxy derivatives 11a,b , while the minor cis‐stereoisomer (+)‐ 12a was isolated by chromatography (trans/cis of the epoxy moiety relative to the C2 or C3 side chain). Alternatively, the corresponding trans‐epoxy alcohol or acetate 13a,b was obtained either by reduction/esterification from trans‐epoxy aldehyde (+)‐ 11a or by stereoselective epoxidation of the α‐campholenol (+)‐ 15a or of its acetate (?)‐ 15b , respectively. Their cis‐analogues were prepared starting from (+)‐ 12a . Either (+)‐ 4h or (?)‐ 11b , was submitted to a Bayer‐Villiger oxidation to afford acetate (?)‐ 16a . Since isomerizations of (?)‐ 16 lead preferentially to β‐campholene isomers, we followed a known procedure for the isomerization of (?)‐epoxyverbenone (?)‐ 2e to the norcampholenal analogue (+)‐ 19a . Reduction and subsequent protection afforded the silyl ether (?)‐ 19c , which was stereoselectively hydroborated under oxidative condition to afford the secondary alcohol (+)‐ 20c . Further oxidation and epimerization furnished the trans‐ketone (?)‐ 17a , a known intermediate of either (+)‐β‐necrodol (= (+)‐(1S,3S)‐2,2,3‐trimethyl‐4‐methylenecyclopentanemethanol; 17c ) or (+)‐(Z)‐lancifolol (= (1S,3R,4Z)‐2,2,3‐trimethyl‐4‐(4‐methylpent‐3‐enylidene)cyclopentanemethanol). Finally, hydrogenation of (+)‐ 4b gave the saturated cis‐aldehyde (+)‐ 21 , readily reduced to its corresponding alcohol (+)‐ 22a . Similarly, hydrogenation of β‐campholenol (= 2,3,3‐trimethylcyclopent‐1‐ene‐1‐ethanol) gave access via the cis‐alcohol rac‐ 23a , to the cis‐aldehyde rac‐ 24 .  相似文献   

14.
A simple and eco‐friendly method for the preparation of 1,5‐diaryl‐3‐(arylamino)‐1H‐pyrrol‐2(5H)‐ones via the cyclo‐condensation reaction of aldehydes, amines and ethyl pyruvate in the presence of silica supported ferric chloride (SiO2‐FeCl3) as reusable heterogeneous catalyst is described. The present methodology offers several advantages such as excellent yields, simple procedure and short reaction times.  相似文献   

15.
Fourteen new diorganotin(IV) complexes of N‐(5‐halosalicylidene)‐α‐amino acid, R′2Sn(5‐X‐2‐OC6H3CH?NCHRCOO) (where X = Cl, Br; R = H, Me, i‐Pr; R′ = n‐Bu, Ph, Cy), were synthesized by the reactions of diorganotin halides with potassium salt of N‐(5‐halosalicylidene)‐α‐amino acid and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of Bu2Sn(5‐Cl‐2‐OC6H3CH?NCH(i‐Pr)COO) and Ph2Sn(5‐Br‐2‐OC6H3CH?NCH(i‐Pr)COO) were determined by X‐ray single‐crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry and form five‐ and six‐membered chelate rings with the tridentate ligand. Bioassay results of a few compounds indicated that the compounds have strong cytotoxic activity against three human tumour cell lines, i.e. HeLa, CoLo205 and MCF‐7, and the activity decreased in the order Cy>n‐Bu>Ph for the R′ group bound to tin. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Depsipeptides and cyclodepsipeptides are analogues of the corresponding peptides in which one or more amide groups are replaced by ester functions. Reports of crystal structures of linear depsipeptides are rare. The crystal structures and conformational analyses of four depsipeptides with an alternating sequence of an α,α‐disubstituted α‐amino acid and an α‐hydroxy acid are reported. The molecules in the linear hexadepsipeptide amide in (S)‐Pms‐Acp‐(S)‐Pms‐Acp‐(S)‐Pms‐Acp‐NMe2 acetonitrile solvate, C47H58N4O9·C2H3N, ( 3b ), as well as in the related linear tetradepsipeptide amide (S)‐Pms‐Aib‐(S)‐Pms‐Aib‐NMe2, C28H37N3O6, ( 5a ), the diastereoisomeric mixture (S,R)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2/(R,S)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2 (1:1), C32H41N3O6, ( 5b ), and (R,S)‐Mns‐Acp‐(S,R)‐Mns‐Acp‐NMe2, C30H37N3O6, ( 5c ) (Pms is phenyllactic acid, Acp is 1‐aminocyclopentanecarboxylic acid and Mns is mandelic acid), generally adopt a β‐turn conformation in the solid state, which is stabilized by intramolecular N—H…O hydrogen bonds. Whereas β‐turns of type I (or I′) are formed in the cases of ( 3b ), ( 5a ) and ( 5b ), which contain phenyllactic acid, the torsion angles for ( 5c ), which incorporates mandelic acid, indicate a β‐turn in between type I and type III. Intermolecular N—H…O and O—H…O hydrogen bonds link the molecules of ( 3a ) and ( 5b ) into extended chains, and those of ( 5a ) and ( 5c ) into two‐dimensional networks.  相似文献   

17.
The selectivities of different β‐nucleating agents might be quite different from each other, which is important in determining the crystallization and properties of the obtained β‐isotactic polypropylene (β‐iPP). However, the relationship between molecular structure and dynamic crystallization behavior of β‐iPP nucleated by dual‐selective β‐nucleating agent (DS‐β‐NA) is still not clear. In this study, the dynamic crystallization and melting behavior of two β‐iPP with nearly same average isotacticity but different stereo‐defect distribution, nucleated by a DS‐β‐NA (N,N′‐dicyclohexyl‐2,6‐naphthalenedicarboxamide; trade name TMB‐5), were studied by differential scanning calorimetry, wide‐angle X‐ray diffraction, and scanning electronic microscopy. The results indicated that in the presence of TMB‐5, the dynamic crystallization and melting behavior of the samples are quite different because the joint effects of the dual selectivity of TMB‐5 and stereo‐defect distribution of the iPP under different cooling rates. Two important roles were observed: (i) slow cooling rate favors the formation of high β‐fraction; and (ii) high crystallization temperature favors the crystallization of α‐phase accelerated by TMB‐5. Generally, the dual selectivity of the DS‐β‐NA, the stereo‐defect distribution of iPP, and the cooling rate were important factors in determining the formation of β‐crystal. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Purine 3′:5′‐cyclic nucleotides are very well known for their role as the secondary messengers in hormone action and cellular signal transduction. Nonetheless, their solid‐state conformational details still require investigation. Five crystals containing purine 3′:5′‐cyclic nucleotides have been obtained and structurally characterized, namely adenosine 3′:5′‐cyclic phosphate dihydrate, C10H12N5O6P·2H2O or cAMP·2H2O, (I), adenosine 3′:5′‐cyclic phosphate 0.3‐hydrate, C10H12N5O6P·0.3H2O or cAMP·0.3H2O, (II), guanosine 3′:5′‐cyclic phosphate pentahydrate, C10H12N5O7P·5H2O or cGMP·5H2O, (III), sodium guanosine 3′:5′‐cyclic phosphate tetrahydrate, Na+·C10H11N5O7P·4H2O or Na(cGMP)·4H2O, (IV), and sodium inosine 3′:5′‐cyclic phosphate tetrahydrate, Na+·C10H10N4O7P·4H2O or Na(cIMP)·4H2O, (V). Most of the cyclic nucleotide zwitterions/anions [two from four cAMP present in total in (I) and (II), cGMP in (III), cGMP in (IV) and cIMP in (V)] are syn conformers about the N‐glycosidic bond, and this nucleobase arrangement is accompanied by Crib—H…Npur hydrogen bonds (rib = ribose and pur = purine). The base orientation is tuned by the ribose pucker. An analysis of data obtained from the Cambridge Structural Database made in the context of synanti conformational preferences has revealed that among the syn conformers of various purine nucleotides, cyclic nucleotides and dinucleotides predominate significantly. The interactions stabilizing the syn conformation have been indicated. The inter‐nucleotide contacts in (I)–(V) have been systematized in terms of the chemical groups involved. All five structures display three‐dimensional hydrogen‐bonded networks.  相似文献   

19.
NMR spectra of the synthesized azo dyes, 5‐arylazo‐pyrimidine (1H,3H,5H)‐2,4,6‐triones (5a–g), 1,3‐dimethyl‐5‐arylazo‐pyrimidine (1H,3H,5H)‐2,4,6‐triones (6a–g), and 5‐arylazo‐2‐thioxo‐pyrimidine (1H,3H,5H)‐4,6‐diones (7a–g) were studied in (CD3)2SO (three drops of CD3OD were added into solutions of the dyes in two different concentrations). All dyes showed intramolecular hydrogen bonding. Dyes 5a–7a showed bifurcated intramolecular hydrogen bonds. Tautomeric behaviours of some of N‐methylated azo dyes (6a‐g) were studied in two different concentrations. The solvent–substrate proton exchange of dyes 5a–d, 6a and 7a–e was examined in presence of three drops of CD3OD. The dyes which were soluble in (CD3)2SO containing CD3OD showed isotopic splitting (β‐isotope effect) in the 13C NMR spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
γ‐Acryloyloxyethyl‐γ‐butyrolactone is formed as a byproduct when the polymerization of γ‐acryloyloxy‐ε‐caprolactone is initiated with aluminium isopropoxide in toluene. The extent of this side reaction decreases with decreasing temperature and is dependent on whether the reaction is stopped as soon as monomer conversion is complete or not. A two‐step backbiting mechanism is proposed for this intramolecular transesterification reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号