首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A direct C(sp2)?H alkynylation of aldehyde C(O)?H bonds with hypervalent iodine alkynylation reagents provides ynones under metal‐free conditions. In this method, 1‐[(triisopropylsilyl)ethynyl]‐1,2‐benziodoxol‐3(1H)‐one (TIPS‐EBX) constitutes an efficient alkynylation reagent for the introduction of the triple bond. The substrate scope is extended to a variety of (hetero)aromatic, aliphatic, and α,β‐unsaturated aldehydes.  相似文献   

2.
The alkylation of unactivated β‐methylene C(sp3)? H bonds of α‐amino acid substrates with a broad range of alkyl iodides using Pd(OAc)2 as the catalyst is described. The addition of NaOCN and 4‐Cl‐C6H4SO2NH2 was found to be crucial for the success of this transformation. The reaction is compatible with a diverse array of functional groups and proceeds with high diastereoselectivity. Furthermore, various β,β‐hetero‐dialkyl‐ and β‐alkyl‐β‐aryl‐α‐amino acids were prepared by sequential C(sp3)? H functionalization of an alanine‐derived substrate, thus providing a versatile strategy for the stereoselective synthesis of unnatural β‐disubstituted α‐amino acids.  相似文献   

3.
A transition‐metal‐ and oxidant‐free DNP (2,4‐dinitrophenol)‐catalyzed atom‐economical regio‐ and diastereoselective synthesis of monofunctionalized α‐alkynyl‐3‐amino‐2‐oxindole derivatives by C?H bond functionalization of cyclic amines and alkynes with indoline‐2,3‐diones has been developed. This cascade event sequentially involves the reductive amination of indoline‐2,3‐dione by imine formation and cross coupling between C(sp3)?H and C(sp)?H of the cyclic amines and alkynes. This reaction offers an efficient and attractive pathway to different types of α‐alkynyl‐3‐amino‐2‐oxindole derivatives in good yields with a wide tolerance of functional groups. The salient feature of this methodology is that it completely suppresses the homocoupling of alkynes. To the best of our knowledge, this is the first example of a DNP‐catalyzed metal‐free direct C(sp3)?H and C(sp)?H bond functionalization providing biologically active α‐alkynyl‐3‐amino‐2‐oxindole scaffolds.  相似文献   

4.
An improved and practical procedure for the stereoselective synthesis of anti‐β‐hydroxy‐α‐amino acids (anti‐βhAAs), by palladium‐catalyzed sequential C(sp3)?H functionalization directed by 8‐aminoquinoline auxiliary, is described. followed by a previously established monoarylation and/or alkylation of the β‐methyl C(sp3)?H of alanine derivative, β‐acetoxylation of both alkylic and benzylic methylene C(sp3)?H bonds affords various anti‐β‐hydroxy‐α‐amino acid derivatives. As an example, the synthesis of β‐mercapto‐α‐amino acids, which are highly important to the extension of native chemical ligation chemistry beyond cysteine, is described. The synthetic potential of this protocol is further demonstrated by the synthesis of diverse β‐branched α‐amino acids. The observed diastereoselectivities are strongly influenced by electronic effects of aromatic AAs and steric effects of the linear side‐chain AAs, which could be explained by the competition of intramolecular C?OAc bond reductive elimination from PdIV intermediates vs. intermolecular attack by an external nucleophile (AcO?) in an SN2‐type process.  相似文献   

5.
N‐Ylide complexes of Ir have been generated by C(sp3)?H activation of α‐pyridinium or α‐imidazolium esters in reactions with [Cp*IrCl2]2 and NaOAc. These reactions are rare examples of C(sp3)?H activation without a covalent directing group, which—even more unusually—occur α to a carbonyl group. For the reaction of the α‐imidazolium ester [ 3 H]Cl, the site selectivity of C?H activation could be controlled by the choice of metal and ligand: with [Cp*IrCl2]2 and NaOAc, C(sp3)?H activation gave the N‐ylide complex 4 ; in contrast, with Ag2O followed by [Cp*IrCl2]2, C(sp2)?H activation gave the N‐heterocyclic carbene complex 5 . DFT calculations revealed that the N‐ylide complex 4 was the kinetic product of an ambiphilic C?H activation. Examination of the computed transition state for the reaction to give 4 indicated that unlike in related reactions, the acetate ligand appears to play the dominant role in C?H bond cleavage.  相似文献   

6.
An intermolecular C(sp3)? H amination using a Pd0/PAr3 catalyst was developed. The reaction begins with oxidative addition of R2N? OBz to a Pd0/PAr3 catalyst and subsequent cleavage of a C(sp3)? H bond by the generated Pd? NR2 intermediate. The catalytic cycle proceeds without the need for external oxidants in a similar manner to the extensively studied palladium(0)‐catalyzed C? H arylation reactions. The electron‐deficient triarylphosphine ligand is crucial for this C(sp3)? H amination reaction to occur.  相似文献   

7.
A new mode of activation of an imine via a rare aza‐substituted π‐allyl complex is described. Palladium‐catalyzed C(sp3)? H activation of the N‐allyl imine and the subsequent nucleophilic attack by the α‐alkyl cyanoester produced the 1‐aza‐1,3‐diene as the sole regioisomer. In contrast, nucleophilic attack by the α‐aryl cyanoester exclusively delivered the 2‐aza‐1,3‐diene, which was employed in an inverse‐electron‐demand Diels–Alder reaction for heterobiaryl synthesis.  相似文献   

8.
The direct and controlled activation of a C(sp3)?H bond adjacent to an O atom is of particular synthetic value for the conventional derivatization of ethers or alcohols. In general, stoichiometric amounts of an oxidant are required to remove an electron and a hydrogen atom of the ether for subsequent transformations. Herein, we demonstrate that the activation of a C?H bond next to an O atom could be achieved under oxidant‐free conditions through photoredox‐neutral catalysis. By using a commercial dyad photosensitizer (Acr+‐Mes ClO4?, 9‐mesityl‐10‐methylacridinium perchlorate) and an easily available cobaloxime complex (Co(dmgBF2)2?2 MeCN, dmg=dimethylglyoxime), the nucleophilic addition of β‐keto esters to oxonium species, which is rarely observed in photocatalysis, leads to the corresponding coupling products and H2 in moderate to good yields under visible‐light irradiation. Mechanistic studies suggest that both isochroman and the cobaloxime complex quench the electron‐transfer state of this dyad photosensitizer and that benzylic C?H bond cleavage is probably the rate‐determining step of this cross‐coupling hydrogen‐evolution transformation.  相似文献   

9.
An Ir‐catalyzed C(sp3)?H alkynylation of aliphatic ketones, aldehydes, and alcohols was achieved by using the corresponding oxime derivatives and a IrIII catalyst. This general reaction is selective towards primary C(sp3)?H bonds and can be used for the late‐stage C?H alkynylation of complex molecules.  相似文献   

10.
The first copper‐catalyzed intramolecular C(sp3)? H and C(sp2)? H oxidative amidation has been developed. Using a Cu(OAc)2 catalyst and an Ag2CO3 oxidant in dichloroethane solvent, C(sp3)? H amidation proceeded at a terminal methyl group, as well as at the internal benzylic position of an alkyl chain. This reaction has a broad substrate scope, and various β‐lactams were obtained in excellent yield, even on gram scale. Use of CuCl2 and Ag2CO3 under an O2 atmosphere in dimethyl sulfoxide, however, leads to 2‐indolinone selectively by C(sp2)? H amidation. Kinetic isotope effect (KIE) studies indicated that C? H bond activation is the rate‐determining step. The 5‐methoxyquinolyl directing group could be removed by oxidation.  相似文献   

11.
A transition‐metal‐free Cs2CO3‐catalyzed α‐hydroxylation of carbonyl compounds with O2 as the oxygen source is described. This reaction provides an efficient approach to tertiary α‐hydroxycarbonyl compounds, which are highly valued chemicals and widely used in the chemical and pharmaceutical industry. The simple conditions and the use of molecular oxygen as both the oxidant and the oxygen source make this protocol very environmentally friendly and practical. This transformation is highly efficient and highly selective for tertiary C(sp3)? H bond cleavage.  相似文献   

12.
A palladium‐catalyzed arylation of unactivated γmethylene C(sp3)?H and remote δ‐C?H bonds by using an oxazoline‐carboxylate directing group has been developed. Arylation occurs with a broad substrate scope and high tolerance of functional groups (i.e., halogen, nitro, cyano, ether, trifluoromethyl, amine, and ester). The oxazoline‐type auxiliary can be removed under acidic conditions.  相似文献   

13.
An easily synthesized and accessible N,O‐bidentate auxiliary has been developed for selective C? H activation under palladium catalysis. The novel auxiliary showed its first powerful application in C? H functionalization of remote positions. Both C(sp2)? H and C(sp3)? H bonds at δ‐ and ε‐positions were effectively activated, thus giving tetrahydroquinolines, benzomorpholines, pyrrolidines, and indolines in moderate to excellent yields by palladium‐catalyzed intramolecular C? H amination.  相似文献   

14.
A new iron‐facilitated silver‐mediated radical 1,2‐alkylarylation of styrenes with α‐carbonyl alkyl bromides and indoles is described, and two new C?C bonds were generated in a single step through a sequence of intermolecular C(sp3)?Br functionalization and C(sp2)?H functionalization across the alkenes. This method provides an efficient access to alkylated indoles with broad substrate scope and excellent selectivity.  相似文献   

15.
The alkenylation reactions of 8‐methylquinolines with alkynes, catalyzed by [{Cp*RhCl2}2], proceeds efficiently to give 8‐allylquinolines in good yields by C(sp3)? H bond activation. These reactions are highly regio‐ and stereoselective. A catalytically competent five‐membered rhodacycle has been structurally characterized, thus revealing a key intermediate in the catalytic cycle.  相似文献   

16.
β‐Lactams are very important structural motifs because of their broad biological activities as well as their propensity to engage in ring‐opening reactions. Transition‐metal‐catalyzed C? H functionalizations have emerged as strategy enabling yet uncommon highly efficient disconnections. In contrast to the significant progress of Pd0‐catalyzed C? H functionalization for aryl–aryl couplings, related reactions involving the formation of saturated C(sp3)? C(sp3) bonds are elusive. Reported here is an asymmetric C? H functionalization approach to β‐lactams using readily accessible chloroacetamide substrates. Important aspects of this transformation are challenging C(sp3)? C(sp3) and strain‐building reductive eliminations to for the four‐membered ring. In general, the β‐lactams are formed in excellent yields and enantioselectivities using a bulky taddol phosphoramidite ligand in combination with adamantyl carboxylic acid as cocatalyst.  相似文献   

17.
A method for site‐specific intermolecular γ‐C(sp3)?H functionalization of ketones has been developed using an α‐aminoxy acid auxiliary applying photoredox catalysis. Regioselective activation of an inert C?H bond is achieved by 1,5‐hydrogen atom abstraction by an oxidatively generated iminyl radical. Tertiary and secondary C‐radicals thus formed at the γ‐position of the imine functionality undergo radical conjugate addition to various Michael acceptors to provide, after reduction and imine hydrolysis, the corresponding γ‐functionalized ketones.  相似文献   

18.
A chemoselective C(sp2)? F or C(sp3)? F bond activation of hexafluoropropylene (HFP) was achieved by adopting the proper combination of a Lewis acid co‐additive with a ligand which coordinates Pd0. The treatment of [(η2‐HFP)Pd(PCy3)2] with B(C6F5)3 allowed a chemoselective C(sp3)? F bond cleavage of HFP to give a unique cationic perfluoroallypalladium complex. In this complex, the coordination mode of the perfluoroallyl ligand was considered to be of the unique η2‐fashion.  相似文献   

19.
An unprecedented rhodium(III)‐catalyzed regioselective redox‐neutral annulation reaction of 1‐naphthylamine N‐oxides with diazo compounds was developed to afford various biologically important 1H‐benzo[g]indolines. This coupling reaction proceeds under mild reaction conditions and does not require external oxidants. The only by‐products are dinitrogen and water. More significantly, this reaction represents the first example of dual functiaonalization of unactivated a primary C(sp3)? H bond and C(sp2)? H bond with diazocarbonyl compounds. DFT calculations revealed that an intermediate iminium is most likely involved in the catalytic cycle. Moreover, a rhodium(III)‐catalyzed coupling of readily available tertiary aniline N‐oxides with α‐diazomalonates was also developed under external oxidant‐free conditions to access various aminomandelic acid derivatives by an O‐atom‐transfer reaction.  相似文献   

20.
Cyclopropanes fused to pyrrolidines are important structural features found in a number of marketed drugs and development candidates. Typically, their synthesis involves the cyclopropanation of a dihydropyrrole precursor. Reported herein is a complementary approach which employs a palladium(0)‐catalyzed C? H functionalization of an achiral cyclopropane to close the pyrrolidine ring in an enantioselective manner. In contrast to aryl–aryl couplings, palladium(0)‐catalyzed C? H functionalizations involving the formation of C(sp3)? C(sp3) bonds of saturated heterocycles are very scarce. The presented strategy yields cyclopropane‐fused γ‐lactams from chloroacetamide substrates. A bulky Taddol phosphonite ligand in combination with adamantane‐1‐carboxylic acid as a cocatalyst provides the γ‐lactams in excellent yields and enantioselectivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号