首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
Shaoyao‐Gancao decoction, a Chinese herbal formula, is composed of Paeoniae Radix alba and Glycyrrhiza Radix et rhizoma . It has been widely used to treat muscle spasms and asthma. However, little is known about the bioactive components of Shaoyao‐Gancao decoction. In the present study, the bioactive compounds in water‐extract of Shaoyao‐Gancao decoction were separated by the immobilized β2‐adrenoceptor affinity column and identified using quadrupole time‐of‐flight mass spectrometry. The affinity constants of the separated compounds that bind to β2‐adrenoceptor were determined by frontal analysis. Compound bioactivity was tested in a rat tracheal smooth muscle relaxation assay. We identified the bioactive compounds in the water extract of Shaoyao‐Gancao decoction that bound to the β2‐adrenoceptor as paeoniflorin and liquiritin. Paeoniflorin and liquiritin had only one binding site on the immobilized β2‐adrenoceptor, and the affinity constants were (2.16 ± 0.10) × 104 M−1 and (2.95 ± 0.15) × 104 M−1, respectively. Both compounds induced a concentration‐dependent relaxation of tracheal smooth muscle following K+‐stimulated contraction, and the relaxation effects were abrogated by the β2‐adrenoceptor antagonist, ICI 118551. Therefore, paeoniflorin and liquiritin are bioactive compounds in Shaoyao‐Gancao decoction and the β2‐adrenoceptor affinity chromatography is a useful tool for identifying potential β2‐adrenoceptor ligands in natural products used in traditional Chinese medicine.  相似文献   

2.
Crystals of bis(2‐ethyl‐3‐hydroxy‐6‐methylpyridinium) succinate–succinic acid (1/1), C8H12NO+·0.5C4H4O42−·0.5C4H6O4, (I), and 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium hydrogen succinate, C8H12NO+·C4H5O4, (II), were obtained by reaction of 2‐ethyl‐6‐methylpyridin‐3‐ol with succinic acid. The succinate anion and succinic acid molecule in (I) are located about centres of inversion. Intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds are responsible for the formation of a three‐dimensional network in the crystal structure of (I) and a two‐dimensional network in the crystal structure of (II). Both structures are additionally stabilized by π–π interactions between symmetry‐related pyridine rings, forming a rod‐like cationic arrangement for (I) and cationic dimers for (II).  相似文献   

3.
Two series of furo[3,2‐f ]quinoline‐2‐carboxylate were obtained via a three‐component reaction of aldehydes, 5‐aminobenzofuran‐2‐carboxylate, and 4‐hydroxy‐2H‐chromen‐2‐one or cyclopentane‐1,3‐dione in DMF under catalyst‐free condition in high yields. This one‐pot three‐component reaction provided an efficient method for the synthesis of fused polycyclic heterocycles for bioactive screening.  相似文献   

4.
Imidazo[4,5‐c ]pyrazole derivatives ( 3a–f , 4a–f , and 5a–f ) were efficiently synthesized by one‐pot three‐component reactions using CeO2–MgO as the catalyst. The synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectroscopic analyses. The in vitro antimicrobial activity of the synthesized compounds against various bacterial and fungal strains was screened. Compound 3b was highly active [minimum inhibitory concentration (MIC): 0.5 μg/mL] against Gram‐positive Staphylococcus aureus , and compounds 3b , 3f , 4d , and 4e were highly active (MIC: 0.5, 2, 2, and 0.5 μg/mL, respectively) against Gram‐negative Pseudomonas aeruginosa and Klebsiella pneumoniae , relative to standard ciprofloxacin in the antibacterial activity screening. Compounds 3b and 4f were highly active (MIC: 4 and 0.5 μg/mL, respectively) against Aspergillus fumigatus and Microsporum audouinii in the antifungal activity screening compared with the clotrimazole standard.  相似文献   

5.
Crystal structures are reported for three isomeric compounds, namely 2‐(2‐hydroxy­phenyl)‐2‐oxazoline, (I), 2‐(3‐hydroxy­phenyl)‐2‐oxazoline, (II), and 2‐(4‐hydroxy­phenyl)‐2‐oxazoline, (III), all C9H9NO2 [systematic names: 2‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (I), 3‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (II), and 4‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (III)]. In these compounds, the deviation from coplanarity of the oxazoline and benzene rings is dependent on the position of the hydroxy group on the benzene ring. The coplanar arrangement in (I) is stabilized by a strong intra­molecular O—H⋯N hydrogen bond. Surprisingly, the 2‐oxazoline ring in mol­ecule B of (II) adopts a 3T4 (C2TC3) conformation, while the 2‐oxazoline ring in mol­ecule A, as well as that in (I) and (III), is nearly planar, as expected. Tetra­mers of mol­ecules of (II) are formed and they are bound together via weak C—H⋯N hydrogen bonds. In (III), strong inter­molecular O—H⋯N hydrogen bonds and weak intra­molecular C—H⋯O hydrogen bonds lead to the formation of an infinite chain of mol­ecules perpendicular to the b direction. This paper also reports a theoretical investigation of hydrogen bonds, based on density functional theory (DFT) employing periodic boundary conditions.  相似文献   

6.
While the gold(I)‐catalyzed glycosylation reaction with 4,6‐O‐benzylidene tethered mannosyl ortho‐alkynylbenzoates as donors falls squarely into the category of the Crich‐type β‐selective mannosylation when Ph3PAuOTf is used as the catalyst, in that the mannosyl α‐triflates are invoked, replacement of the ?OTf in the gold(I) complex with less nucleophilic counter anions (i.e., ?NTf2, ?SbF6, ?BF4, and ?BAr4F) leads to complete loss of β‐selectivity with the mannosyl ortho‐alkynylbenzoate β‐donors. Nevertheless, with the α‐donors, the mannosylation reactions under the catalysis of Ph3PAuBAr4F (BAr4F=tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate) are especially highly β‐selective and accommodate a broad scope of substrates; these include glycosylation with mannosyl donors installed with a bulky TBS group at O3, donors bearing 4,6‐di‐O‐benzoyl groups, and acceptors known as sterically unmatched or hindered. For the ortho‐alkynylbenzoate β‐donors, an anomerization and glycosylation sequence can also ensure the highly β‐selective mannosylation. The 1‐α‐mannosyloxy‐isochromenylium‐4‐gold(I) complex ( Cα ), readily generated upon activation of the α‐mannosyl ortho‐alkynylbenzoate ( 1 α ) with Ph3PAuBAr4F at ?35 °C, was well characterized by NMR spectroscopy; the occurrence of this species accounts for the high β‐selectivity in the present mannosylation.  相似文献   

7.
The bulk cyclopolymerization of diepisulfide, 1,2:5,6‐diepithio‐3,4‐di‐O‐methyl‐1,2:5,6‐tetradeoxy‐D ‐mannitol ( 1 ), was studied using R4N+Br? (R = ? CH3, C2H5, C3H7, C4H9, and C7H15) and (C4H9)4N+X? (X = Cl, I, NO3, and ClO4) as the initiators. All the bulk polymerizations of 1 using quaternary tetraalkylammonium salts at 90 °C proceeded without gelation even at high conversion to produce gel‐free polymers consisting of 2,5‐anhydro‐1,5‐dithio‐D ‐glucitol (I) as the major cyclic repeating unit along with 1,5‐anhydro‐2,5‐dithio‐D ‐mannitol (II) and the desulfurized acyclic unit (III) as the minor units. The polymerization rate and molar fraction of the I unit increased with the increasing alkyl chain length of the tetraalkylammonium cation and the increasing nucleophilicity of the counteranion. Tetrabutylammonium chloride exhibited the highest catalytic activity and the highest stereoselectivity, that is, the thiosugar polymer with I:II:III = 81:15:4 and a number‐average molecular weight of 31.9 × 103 was obtained in 85% yield for a polymerization time of 0.5 h. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 965–970, 2002  相似文献   

8.
The isomorphous structures of the title molecules, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐3‐iodo‐1H‐pyrazolo‐[3,4‐d]pyrimidine, (I), C10H12IN5O3, and 4‐amino‐3‐bromo‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐pyrazolo[3,4‐d]­pyrimidine, (II), C10H12BrN5O3, have been determined. The sugar puckering of both compounds is C1′‐endo (1′E). The N‐­glycosidic bond torsion angle χ1 is in the high‐anti range [?73.2 (4)° for (I) and ?74.1 (4)° for (II)] and the crystal structure is stabilized by hydrogen bonds.  相似文献   

9.
The pyrimidine rings in ethyl (E)‐3‐[2‐amino‐4,6‐bis(dimethylamino)pyrimidin‐5‐yl]‐2‐cyanoacrylate, C14H20N6O2, (I), and 2‐[(2‐amino‐4,6‐di‐1‐piperidylpyrimidin‐5‐yl)methylene]malononitrile, C18H23N7, (II), which crystallizes with Z′ = 2 in the space group, are both nonplanar with boat conformations. The molecules of (I) are linked by a combination of N—H...N and N—H...O hydrogen bonds into chains of edge‐fused R22(8) and R44(20) rings, while the two independent molecules in (II) are linked by four N—H...N hydrogen bonds into chains of edge‐fused R22(8) and R22(20) rings. This study illustrates both the readiness with which highly‐substituted pyrimidine rings can be distorted from planarity and the significant differences between the supramolecular aggregation in two rather similar compounds.  相似文献   

10.
The purpose of this study, the direct separation of aminoalkanol derivatives I and II of 1,7‐dimethyl‐8,9‐diphenyl‐4‐azatricyclo[5.2.1.02,6]dec‐8‐ene‐3,5,10‐trione, which was found in earlier studies as potential anticancer drugs, were performed. Capillary electrophoresis offers the possibility of fast, cheap, and reproducible separations for compounds I and II . In this paper, the simultaneous separation of I and II by capillary zone electrophoresis has been achieved within 8 min by use of 50 mM phosphate buffer of pH 2.5. Analysis of the two compounds in the serum plasma standards was conducted. Limits of detection of I and II by UV absorbance at 200 nm were achieved in the range of 156.3–156.6 ng/mL. The method was validated for linearity, accuracy, precision, limits of detection, and quantification. The calibration equation revealed a good linear relationship (r2 = 0.998–0.999). Sufficient recovery was observed in the range of 96.3–99.5%. The method showed good reproducibility with intra‐ and interday precision of 0.97 and 1.76%, respectively. The quantification limits for the compounds were in the range of 477.0–479.8 ng/mL. The proposed method was applied to the analysis of real serum samples.  相似文献   

11.
Carbon monoxide (CO) has recently been identified as a gaseous signaling molecule that exerts various salutary effects in mammalian pathophysiology. Photoactive metal carbonyl complexes (photoCORMs) are ideal exogenous candidates for more controllable and site‐specific CO delivery compared to gaseous CO. Along this line, our group has been engaged for the past few years in developing group‐7‐based photoCORMs towards the efficient eradication of various malignant cells. Moreover, several such complexes can be tracked within cancerous cells by virtue of their luminescence. The inherent luminecscent nature of some photoCORMs and the change in emission wavelength upon CO release also provide a covenient means to track the entry of the prodrug and, in some cases, both the entry and CO release from the prodrug. In continuation of the research circumscribing the development of trackable photoCORMs and also to graft such molecules covalently to conventional delivery vehicles, we report herein the synthesis and structures of three rhenium carbonyl complexes, namely, fac‐tricarbonyl[2‐(pyridin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′](4‐vinylpyridine‐κN )rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C12H8N2S)(CO)3](CF3SO3), ( 1 ), fac‐tricarbonyl[2‐(quinolin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′](4‐vinylpyridine‐κN )rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C16H10N2S)(CO)3](CF3SO3), ( 2 ), and fac‐tricarbonyl[1,10‐phenanthroline‐κ2N ,N ′](4‐vinylpyridine‐κN )rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C12H8N2)(CO)3](CF3SO3), ( 3 ). In all three complexes, the ReI center resides in a distorted octahedral coordination environment. These complexes exhibit CO release upon exposure to low‐power UV light. The apparent CO release rates of the complexes have been measured to assess their comparative CO‐donating capacity. The three complexes are highly luminescent and this in turn provides a convenient way to track the entry of the prodrug molecules within biological targets.  相似文献   

12.
A series of 50 novel 7‐[2‐hydroxy‐3‐(1,2,3‐triazol‐1‐yl)propyloxy]‐3‐alkyl‐4‐methylcoumarins had been designed and synthesized in good to excellent yields via Cu(I)‐catalyzed 1,3‐dipolar cycloaddition reaction “click chemistry” of 7‐(3‐azido‐2‐hydroxypropyloxy)‐3‐alkyl‐4‐methylcoumarins with variety of acetylene derivatives. In turn, the precursor compound, that is, 7‐(3‐azido‐2‐hydroxypropyloxy)‐3‐alkyl‐4‐methylcoumarin, was synthesized by condensation of epichlorohydrin with 7‐hydroxy‐3‐alkyl‐4‐methylcoumarins followed by opening of the epoxide ring in the resulted 7‐epoxymethoxy‐3‐alkyl‐4‐methylcoumarins with sodium azide. All the synthesized compounds were unambiguously identified on the basis of their spectral data analyses (IR, 1H‐NMR, 13C‐NMR spectra, and HRMS).  相似文献   

13.
(Z)‐3‐(1H‐Indol‐3‐yl)‐2‐(3‐thienyl)­acrylo­nitrile, C15H10N2S, (I), and (Z)‐3‐[1‐(4‐tert‐butyl­benzyl)‐1H‐indol‐3‐yl]‐2‐(3‐thienyl)­acrylo­nitrile, C26H24N2S, (II), were prepared by base‐catalyzed reactions of the corresponding indole‐3‐carbox­aldehyde with thio­phene‐3‐aceto­nitrile. 1H/13C NMR spectral data and X‐ray crystal structures of compounds (I) and (II) are presented. The olefinic bond connecting the indole and thio­phene moieties has Z geometry in both cases, and the mol­ecules crystallize in space groups P21/c and C2/c for (I) and (II), respectively. Slight thienyl ring‐flip disorder (ca 5.6%) was observed and modeled for (I).  相似文献   

14.
Details of the structures of two conformational polymorphs of the title compound, C12H17N2OS+·Cl, are reported. In form (I) (space group P), the two N—H groups of the cation are in a trans conformation, while in form (II) (space group P21/c), they are in a cis arrangement. This results in different packing and hydrogen‐bond arrangements in the two forms, both of which have extended chains lying along the a direction. In form (I), these chains are composed of centrosymmetric R42(18) (N—H...Cl and O—H...Cl) hydrogen‐bonded rings and R22(18) (N—H...O) hydrogen‐bonded rings. In form (II), the chains are formed by centrosymmetric R42(18) (N—H...Cl and O—H...Cl) hydrogen‐bonded rings and by R42(12) (N—H...Cl) hydrogen‐bonded rings.  相似文献   

15.
A palladium‐catalyzed highly selective 3,4‐bifunctionalization of 3‐I‐o‐carborane has been developed, leading to the preparation of 3‐alkenyl‐4‐R‐o‐carboranes (R=alkyl, alkynyl, aryl, allyl, CN, and amido) in high to excellent yields. This protocol combines the sequential activation of cage B(3)?I and B(4)?H bonds by Pd migration from exo‐alkenyl sp2 C to cage B(4), which is driven by thermodynamic force. This represents a brand‐new strategy for selective bifunctionalization of carboranes with two different substituents.  相似文献   

16.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

17.
A new method for the determination of the stereoisomers, in aqueous medium and serum, of the racemic aminoalkanol derivatives I and II of 1,7‐dimethyl‐8,9‐diphenyl‐4‐azatricyclo[5.2.1.02,6]dec‐8‐ene‐3,5,10‐trione, which were found in earlier studies to be potential anticancer drugs, was developed and validated. The optimized conditions included 25 mM phosphate buffer adjusted to pH 2.5, containing γ‐cyclodextrin at a concentration of 5% m/v, as background electrolyte, an applied voltage of +10 kV, and a temperature of 25°C. Separations were carried out using a fused‐silica capillary. The developed method of determining the enantiomers of compounds I(S), I(R) and II(S), II(R) was characterized by the following parameters: a detection time within 10.8 min, a detection limit in the range of 141.2–141.7 ng/mL using the UV absorption detection at 200 nm. Good linearity (R2 = 0.9989–0.9998) was achieved within the range of concentrations studied. A very good extraction yield of 95.4–99.7% was achieved, and recoveries were carried out from both aqueous solutions and matrix serum. The repeatability of the method for peak areas with an accuracy of the determined concentrations of the analytes in the range of 1.43–1.89%, and limits of quantitation in the range of 432.4–436.3 ng/mL were achieved.  相似文献   

18.
Although the two polymorphic modifications, (I) and (II), of the title compound, C13H10N2O, crystallize in the same space group (P21/c), their asymmetric units have Z′ values of 1 and 2, respectively. These are conformational polymorphs, since the mol­ecules in phases (I) and (II) adopt different rotations of the phenyl ring with respect the central 2‐cyano­carboxy­amino­prop‐2‐enyl fragment. Calculations of crystal packing using Cerius2 [Molecular Simulations (1999). 9685 Scranton Road, San Diego, CA 92121, USA] have shown that (I) is more stable than (II), by 1.3 kcal mol?1 for the crystallographically determined structures and by 1.56 kcal mol?1 for the optimized structures (1 kcal mol?1 = 4.184 kJ mol?1). This difference is mainly attributed to the different strengths of the hydrogen bonding in the two forms.  相似文献   

19.
The structures of three salts of 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate with alkali metals (Na, K and Rb) are related to their luminescence properties. The Rb salt, rubidium(I) 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate, Rb+·C8HN4O2, is isomorphous with the previously reported potassium salt. For the Na compound, sodium(I) 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate dihydrate, Na+·C8HN4O2·2H2O, two independent sodium ions, located on inversion centers, are coordinated by four water molecules each and additionally by two cyano groups for one and two carbonyl groups for the other. The luminescence spectra in solution are unaffected by the nature of the cation but vary strongly with the dielectric constant of the solvent. In the solid state, the emission maxima vary with structural features; the redshift of the maximum luminescence varies inversely with the distance between the stacked anions.  相似文献   

20.
In each of 6‐amino‐3‐methyl‐2‐(morpholin‐4‐yl)‐5‐nitrosopyrimidin‐4(3H)‐one, C9H13N5O3, (I), morpholin‐4‐ium 4‐amino‐2‐(morpholin‐4‐yl)‐5‐nitroso‐6‐oxo‐1,6‐dihydropyrimidin‐1‐ide, C4H10NO+·C8H10N5O3, (II), and 6‐amino‐2‐(morpholin‐4‐yl)‐5‐nitrosopyrimidin‐4(3H)‐one hemihydrate, C8H11N5O3·0.5H2O, (III), the bond distances within the pyrimidine components are consistent with significant electronic polarization, which is most marked in (II) and least marked in (I). Despite the high level of substitution, the pyrimidine rings are all effectively planar, and in each of the pyrimidine components, there are intramolecular N—H...O hydrogen bonds. In each compound, the organic components are linked by multiple N—H...O hydrogen bonds to form sheets of widely differing construction, and in compound (III) adjacent sheets are linked by the water molecules, so forming a three‐dimensional hydrogen‐bonded framework. This study also contains the first direct geometric comparison between the electronic polarization in a neutral aminonitrosopyrimidine and that in its ring‐deprotonated conjugate anion in a metal‐free environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号