首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Aromatic‐imide‐based thermally activated delayed fluorescence (TADF) materials with a twisted donor–acceptor–donor skeleton were efficiently synthesized and exhibited excellent thermal stability and high photoluminescence quantum yields. The small ΔE ST value (<0.1 eV) along with the clear temperature‐dependent delayed component of their transient photoluminescence (PL) spectra demonstrated their excellent TADF properties. Moreover, the performance of organic light‐emitting diodes in which TADF materials AI‐Cz and AI‐TBCz were used as dopants were outstanding, with external quantum efficiencies up to 23.2 and 21.1 %, respectively.  相似文献   

2.
New deep‐red light‐emitting phosphorescent dendrimers with hole‐transporting carbazole dendrons were synthesized by reacting tris(2‐benzo[b]thiophen‐2‐yl‐pyridyl) iridium (III) complex with carbazolyl dendrons by DCC‐catalyzed esterification. The resulting first‐, second‐, and third‐generation dendrimers were found to be highly efficient as solution‐processable emitting materials and for use in host‐free electrophosphorescent light‐emitting diodes. We fabricated a host‐free dendrimer EL device with configuration ITO/PEDOT:PSS (40 nm)/dendrimer (55 nm)/BCP (10 nm)/Alq3 (40 nm)/LiF (1 nm)/Al (100 nm) and characterized the device performance. The multilayered devices showed luminance of 561 cd/m2 at 383.4 mA/cm2 (12 V) for 15 , 1302 cd/m2 at 321.3 mA/cm2 (14 V) for 16 , and 422 cd/m2 at 94.4 mA/cm2 (18 V) for 17 . The third‐generation dendrimer, 17 (ηext = 6.12% at 7.5 V), showed the highest external quantum efficiency (EQE) with an increase in the density of the light‐harvesting carbazole dendron. Three dendrimers exhibited considerably pure deep‐red emission with CIE 1931 (Commission International de L'Eclairage) chromaticity coordinates of x = 0.70, y = 0.30. The CIE coordinates remained very stable with the current density. The integration of rigid hole‐transporting dendrons and phosphorescent complexes provides a new route to design highly efficient solution‐processable materials for dendrimer light‐emitting diode (DLED) applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7517–7533, 2008  相似文献   

3.
《中国化学》2018,36(3):241-246
A new multi‐functional penta‐carbazole/benzophenone hybrid compound 5CzBP was designed and synthesized through a simple one‐step catalyst‐free C—N coupling reaction by using 2,3,4,5,6‐pentafluorobenzophenone and carbazole as starting materials. 5CzBP is very soluble in tetrahydrofuran (THF), which brings an environmentally friendly device fabrication for solution‐processed OLEDs instead of most widely used chlorinated solvents when 5CzBP is employed as the bulk‐phase of organic host or non‐doped emitter in the emissive layer. 5CzBP exhibits thermally activated delayed fluorescence (TADF) characteristic with relatively high triplet energy of 2.60 eV and a low ΔEST of 0.01 eV. By using the new TADF material as organic host for another green TADF emitter, maximum external quantum efficiency (EQE) of 12.5% has been achieved in simple solution‐processed OLED device. Besides, a maximum EQE of 8.9% and 5.7% was further obtained in TADF devices based on 5CzBP as dopant and non‐doped emitter, respectively. The simultaneously acting as efficient TADF host and non‐doped TADF emitter provides the potential guidance of the future simple single‐layer two‐color white OLEDs based on low‐cost pure organic TADF materials.  相似文献   

4.
Luminescent materials consisting of boron clusters, such as carboranes, have attracted immense interest in recent years. In this study, luminescent organic–inorganic conjugated systems based on o‐carboranes directly bonded to electron‐donating and electron‐accepting π‐conjugated units were elaborated as novel optoelectronic materials. These o‐carborane derivatives simultaneously possessed aggregation‐induced emission (AIE) and thermally activated delayed fluorescence (TADF) capabilities, and showed strong yellow‐to‐red emissions with high photoluminescence quantum efficiencies of up to 97 % in their aggregated states or in solid neat films. Organic light‐emitting diodes utilizing these o‐carborane derivatives as a nondoped emission layer exhibited maximum external electroluminescence quantum efficiencies as high as 11 %, originating from TADF.  相似文献   

5.
We propose the novel σ–π conjugated polymer poly(biphenyl germanium) grafted with two electron‐donating acridan moieties on the Ge atom for use as the host material in a polymer light‐emitting diode (PLED) with the sky‐blue‐emitting thermally activated delayed fluorescence (TADF) material DMAC‐TRZ as the guest. Its high triplet energy (ET) of 2.86 eV is significantly higher than those of conventional π–π conjugated polymers (ET=2.65 eV as the limit) and this guest emitter (ET=2.77 eV). The TADF emitter emits bluer emission than in other host materials owing to the low orientation polarizability of the germanium‐based polymer host. The Ge atom also provides an external heavy‐atom effect, which increases the rate of reverse intersystem crossing in this TADF guest, so that more triplet excitons are harvested for light emission. The sky‐blue TADF electroluminescence with this host/guest pair gave a record‐high external quantum efficiency of 24.1 % at maximum and 22.8 % at 500 cd m?2.  相似文献   

6.
We propose the novel σ–π conjugated polymer poly(biphenyl germanium) grafted with two electron‐donating acridan moieties on the Ge atom for use as the host material in a polymer light‐emitting diode (PLED) with the sky‐blue‐emitting thermally activated delayed fluorescence (TADF) material DMAC‐TRZ as the guest. Its high triplet energy (ET) of 2.86 eV is significantly higher than those of conventional π–π conjugated polymers (ET=2.65 eV as the limit) and this guest emitter (ET=2.77 eV). The TADF emitter emits bluer emission than in other host materials owing to the low orientation polarizability of the germanium‐based polymer host. The Ge atom also provides an external heavy‐atom effect, which increases the rate of reverse intersystem crossing in this TADF guest, so that more triplet excitons are harvested for light emission. The sky‐blue TADF electroluminescence with this host/guest pair gave a record‐high external quantum efficiency of 24.1 % at maximum and 22.8 % at 500 cd m?2.  相似文献   

7.
《化学:亚洲杂志》2017,12(17):2299-2303
Aromatic difluoroboronated β‐diketone ( BF2DK ) derivatives are a widely known class of luminescent organic materials that exhibit high photoluminescent quantum efficiency and unique aggregation‐dependent fluorescence behavior. However, there have been only a few reports on their use in solid‐state electronic devices, such as organic light‐emitting devices (OLEDs). Herein, we investigated the solid‐state properties and OLED performance of a series of π‐extended BF2DK derivatives that have previously been shown to exhibit intense fluorescence in the solution state. The BF2DK derivatives formed exciplexes with a carbazole derivative and exhibited thermally activated delayed fluorescence (TADF) behavior to give orange electroluminescence with a peak external quantum efficiency of 10 % that apparently exceeds the theoretical efficiency limit of conventional fluorescent OLEDs (7.5 %), assuming a light out‐coupling factor of 30 %.  相似文献   

8.
《化学:亚洲杂志》2017,12(2):216-223
Self‐host thermally activated delayed fluorescence (TADF) materials have recently been identified as effective emitters for solution‐processed nondoped organic light‐emitting diodes (OLEDs). However, except for the carbazole unit, few novel dendrons have been developed to build self‐host TADF emitters. This study reports two self‐host blue materials, tbCz‐SO and poCz‐SO, with the same TADF emissive core and different dendrons. The influence of the peripheral dendrons on the photophysical properties and electroluminescent performances of the self‐host materials were systematically investigated. The transient fluorescence and electroluminescence spectra indicated that the diphenylphosphoryl carbazole units could effectively encapsulate the emissive core to reduce the concentration quenching effect and to enhance reverse intersystem crossing. By using tbCz‐SO and poCz‐SO as host‐free blue emitters, the performance of the solution‐processed nondoped OLED device demonstrated that a more balanced charge transfer from the bipolar dendrons would offer a better current efficiency of 10.5 cd A−1 and stable color purity with Commission Internationale de L'Eclairage units of (0.18, 0.27).  相似文献   

9.
Herein, the universal design of high‐efficiency stimuli‐responsive luminous materials endowed with mechanochromic luminescence (MCL) and thermally activated delayed fluorescence (TADF) functions is reported. The origin of the unique stimuli‐triggered TADF switching for a series of carbazole–isophthalonitrile‐based donor–acceptor (D–A) luminogens is demonstrated based on systematic photophysical and X‐ray analysis, coupled with theoretical calculations. It was revealed that a tiny alteration of the intramolecular D–A twisting in the excited‐state structures governed by the solid morphologies is responsible for this dynamic TADF switching behavior. This concept is applicable to the fabrication of bicolor emissive organic light‐emitting diodes using a single TADF emitter.  相似文献   

10.
Aluminum and zinc complexes of 4‐substituted 8‐hydroxyquinoline were used effectively as emissive materials in light‐emitting diodes (LED). The substituents chosen in this study were p‐methoxy‐2‐styryl, p‐diethylamino‐2‐styryl, and naphthalene‐2‐vinyl groups. Their emission spectra were red‐shifted with respect to that of aluminum tris(hydroxylquinolate) (Alq3) as a result of extending their π‐conjugation. All complexes formed amorphous glasses, which exhibited high thermal and electrical stability. Typical LED devices were fabricated by mixing the dyes with polyvinylcarbazole and spin‐coated to form thin films, which were sandwiched between ITO (indium tin oxide) and a metal electrode. These devices displayed yellow‐orange emissions with quantum efficiency ca. 0.4%.  相似文献   

11.
The protection of the 3,6‐positions of 9‐alkyl‐9H‐carbazole repeat units with fluorine substituents in 2,7‐linked main‐chain polymers as well as in copolymers with triaryl amine repeat units affords blue emitting materials with enhanced electrolytic stability. The electronic conjugation of this new class of materials is more extended than that of the equivalent polymers where the 3,6‐positions are protected with methyl substitutions as a result of the smaller steric hindrance of their fluorine substituents. Attachment of fluorine‐protecting groups at the 3,6‐positions of carbazole repeat units in the homopolymers resulted in materials with relatively high ionization potentials (5.71 eV). However, introduction of triaryl amine comonomers as alternating repeat units provided carbazole/triaryl amine copolymers with a low ionization potential (5.25 eV), a very high quantum yield of fluorescence in solution (0.96), and narrow emission bands [full width at half maximum (FWHM) = 52 nm]. The preparation of this new class of materials together with a study of their electronic and photophysical properties is presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The purpose of this paper is to provide an in‐depth investigation of the electronic and optical properties of two series of carbazole‐based blue light‐emitting dendrimers, including 1 – 6 six oligomers. These materials show great potential for application in organic light‐emitting diodes as efficient blue‐light and red‐light emitting materials due to the tuning of the optical and electronic properties by the use of different electron donors (D) and electron acceptors (A). The geometric and electronic structures of these compounds in the ground state are calculated using density functional theory (DFT) and the ab initio HF, whereas the lowest singlet excited states were optimized by ab initio single excitation configuration interaction (CIS). All DFT calculations are performed using the B3LYP functional on 6‐31G* basis set. The outcomes show that the highest occupied molecular orbitals (HOMOs), lowest occupied molecular orbitals (LUMOs), energies gaps, ionization potentials, electron affinities and reorganization energies of each molecular are affected by different D and A moieties and different substitute positions.  相似文献   

13.
Much effort has been devoted to developing highly efficient organic light‐emitting diodes (OLEDs) that function through phosphorescence or thermally activated delayed fluorescence (TADF). However, efficient host materials for blue TADF and phosphorescent guest emitters are limited because of their requirement of high triplet energy levels. Herein, we report the rigid acceptor unit benzimidazobenzothiazole (BID‐BT), which is suitable for use in bipolar hosts in blue OLEDs. The designed host materials, based on BID‐BT, possess high triplet energy and bipolar carrier transport ability. Both blue TADF and phosphorescent OLEDs containing BID‐BT‐based derivatives exhibit external quantum efficiencies as high as 20 %, indicating that these hosts allow efficient triplet exciton confinement appropriate for blue TADF and phosphorescent guest emitters.  相似文献   

14.
High‐color‐purity emissions with small a full‐width at half‐maximum (FWHM) are an ongoing pursuit for high‐resolution displays. Though the flourishment of narrow‐band emissive materials with multi‐resonance induced thermally activated delayed fluorescence (MR‐TADF) in the blue region, such materials have not validated their potential in other color regions. By amplifying the influence of skeleton and peripheral units, a series of highly efficient green‐emitting MR‐TADF materials are firstly reported. Peripheral units with electron‐deficit properties can significantly narrow the energy gap for bathochromic emission without compromising the color fidelity. MR‐TADF emitters with photo‐luminance quantum yields of above 90 % with FWHMs of ≤25 nm are developed. The corresponding organic light‐emitting diodes show maximum external quantum efficiency/ power efficiency of 22.02 %/ 69.82 lm W?1 with excellent long‐term stability.  相似文献   

15.
Significant efforts have been made to develop high‐efficiency organic light‐emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) emitters with blue, green, yellow, and orange–red colors. However, efficient TADF materials with colors ranging from red, to deep‐red, to near‐infrared (NIR) have been rarely reported owing to the difficulty in molecular design. Herein, we report the first NIR TADF molecule TPA‐DCPP (TPA=triphenylamine; DCPP=2,3‐dicyanopyrazino phenanthrene) which has a small singlet–triplet splitting (ΔEST) of 0.13 eV. Its nondoped OLED device exhibits a maximum external quantum efficiency (EQE) of 2.1 % with a Commission International de L′Éclairage (CIE) coordinate of (0.70, 0.29). Moreover, an extremely high EQE of nearly 10 % with an emission band at λ=668 nm has been achieved in the doped device, which is comparable to the most‐efficient deep‐red/NIR phosphorescent OLEDs with similar electroluminescent spectra.  相似文献   

16.
《化学:亚洲杂志》2017,12(6):648-654
Herein, 9,10‐dihydro‐9,9‐dimethylacridine (Ac) or phenoxazine (PXZ)‐substituted isonicotinonitrile (INN) derivatives, denoted as 2AcINN , 26AcINN , and 26PXZINN , were developed as a series of thermally activated delayed fluorescence (TADF) emitters. These emitters showed reasonably high photoluminescence quantum yields of 71–79 % in the host films and high power efficiency organic light‐emitting diodes (OLEDs). Sky‐blue emitter 26AcINN exhibited a low turn‐on voltage of 2.9 V, a high external quantum efficiency (η ext) of 22 %, and a high power efficiency (η p) of 66 lm W−1 with Commission Internationale de l′Eclairage (CIE) chromaticity coordinates of (0.22, 0.45), whereas green emitter 26PXZINN exhibited a low turn‐on voltage of 2.2 V, a high η ext of 22 %, and a high η p of 99 lm W−1 with CIE chromaticity coordinates of (0.37, 0.58). These performances are among the best for TADF OLEDs to date.  相似文献   

17.
Formylphenyl has been demonstrated to act as an acceptor to construct thermally activated delayed fluorescence (TADF) emitter, and therefore a series of the TADF‐conjugated polymers with formylphenyl as pendant acceptor and carbazole/acridine as backbone donor are designed and synthesized. All polymers involve the twisted donor/acceptor structural moieties with the sufficiently spatial separation between the highest occupied molecular orbital and the lowest unoccupied molecular orbital as well as a small singlet/triplet splitting, and exhibit the legible TADF features confirmed by theoretical calculation and their transient decay spectra. The solution‐processed organic light‐emitting diodes using neat film of the polymers as emissive layer achieve excellent performance with the maximum external quantum efficiency (EQE) of up to 10.6%, the maximum current efficiency of up to 35.3 cd A−1 and the low turn‐on voltage of 2.7 V. Moreover, the EQE still remains 10.3% at the luminance of 1000 cd m−2 with the low driving voltage of 4.4 V and extremely small efficiency roll‐off. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1989–1996  相似文献   

18.
A series of pyrenoimidazoles that contained various functional chromophores, such as anthracene, pyrene, triphenylamine, carbazole, and fluorene, were synthesized and characterized by optical, electrochemical, and theoretical studies. The absorption spectra of the dyes are dominated by electronic transitions that arise from the pyrenoimidazole core and the additional chromophore. All of the dyes exhibited blue‐light photoluminescence with moderate‐to‐high quantum efficiencies. They also displayed high thermal stability and their thermal‐decomposition temperatures fell within the range 462–512 °C; the highest decomposition temperature was recorded for a carbazole‐containing dye. The oxidation propensity of the dyes increased on the introduction of electron‐rich chromophores, such as triphenylamine or carbazole. The application of selected dyes that featured additional chromophores such as pyrene, carbazole, and triphenylamine as blue‐emissive dopants into multilayered organic light‐emitting diodes with a 4,4′‐bis(9H‐carbazol‐9‐yl)biphenyl (CBP) host was investigated. Devices that were based on triphenylamine‐ and carbazole‐containing dyes exhibited deep‐blue emission (CIE 0.157, 0.054 and 0.163, 0.041), whereas a device that was based on a pyrene‐containing dye showed a bright‐blue emission (CIE 0.156, 0.135).  相似文献   

19.
Molecular solid‐state materials with long‐lived luminescence (such as thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) systems) are promising for display, sensoring, and bio‐imaging applications. However, the design of such materials that exhibit both long luminescent lifetime and high solid‐state emissive efficiency remains an open challenge. Two‐dimensional (2D) organic–metal halide perovskite materials have a high blue‐emitting quantum yield of up to 63.55 % and ultralong TADF lifetime of 103.12 ms at ambient temperature and atmosphere. Our design leverages the combined influences of a 2D space/electronic confinement effect and a modest heavy‐atom tuning strategy. Photophysical studies and calculations reveal that the enhanced quantum yield is due to the rigid laminate structure of perovskites, which can effectively inhibit the non‐radiative decay of excitons.  相似文献   

20.
Thermally activated delayed fluorescence (TADF)‐based organic light‐emitting diodes (OLEDs) have attracted enormous attention recently due to their capability to replace conventional phosphorescent organic light‐emitting diodes for practical applications. In this work, a newly designed CN‐substituted imidazopyrazine moiety was utilized as an electron‐accepting unit in a TADF emitter. Two TADF emitters, 8‐(3‐cyano‐4‐(9,9‐dimethylacridin‐10(9H)‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (Ac‐CNImPyr) and 8‐(3‐cyano‐4‐(10H‐phenoxazin‐10‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (PXZ‐CNImPyr), were developed based on the CN‐substituted imidazopyrazine acceptor combined with acridine and phenoxazine donor, respectively. A CN‐substituted phenyl spacer was introduced between the donor and acceptor for a sufficiently small singlet‐triplet energy gap (ΔEST) and molecular orbital management. Small ΔEST of 0.07 eV was achieved for the phenoxazine donor‐based PXZ‐CNImPyr emitter. As a result, an organic light‐emitting diode based on the PXZ‐CNImPyr emitter exhibited a high external quantum efficiency of up to 12.7 %, which surpassed the EQE limit of common fluorescent emitters. Hence, the CN‐modified imidazopyrazine unit can be introduced as a new acceptor for further modifications to develop efficient TADF‐based OLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号