首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton spin relaxation studies of fatty tissue and cerebral white matter   总被引:1,自引:0,他引:1  
Proton spin longitudinal (T1) and transverse (T2) relaxation and proton density studies were carried out on human fatty tissue and bovine white matter, both in the native state and after immersion in D2O. It is concluded that nuclear magnetic resonance signals from fatty tissue result mainly from methyl and methylene protons of hydrocarbons. No contribution from lipid protons could be detected for white matter, although it contains a high percentage of lipids. Imaging experiments, resulting in T1, T2, and proton density maps, support the results obtained with spectroscopic relaxation studies.  相似文献   

2.
Proton spin-lattice and spin-spin relaxation times have been measured in surgically-removed normal CNS tissues and a variety of tumors of the brain. All measurements were made at 20 MHz and 37 degrees C. Between grey and white matter from autopsy human or canine specimens significant differences in T1 or T2 were observed, with greater differences seen in T1. Such discrimination was reduced in samples obtained from live brain-tumor patients due to lengthening in T1 and T2 of white matter near tumorous lesions. Edematous white matter showed T1 and T2 values higher than those of autopsy disease-free white matter. Compared to normal CNS tissues, most brain tumors examined in this study demonstrated elevated T1 and T2 values. Exceptions, however, did exist. No definitive correlation was indicated on a T1 or T2 basis which allowed a distinction to be made between benign and malignant states. Furthermore, considerable variation in relaxation times occurred from tumor to tumor of the same type, suggesting that within a tumor type there are important differences in physiology, biology, and/or pathologic state. Such variation caused partial overlap in relaxation times among certain tumor types and hence may limit the capability of magnetic resonance imaging (MR) alone for the diagnosis of specific disease. Nonetheless, this study predicts that on the basis of T1 or T2 differences most brain tumors are readily detectable by MR via saturation recovery or inversion recovery with appropriate selections of pulse-spacing parameters. In general, tumors can be discriminated against white matter better than grey matter and contrast between glioma and grey matter is usually superior to that between meningioma and grey matter. This work did not consider tissue-associated proton density which should be addressed together with T1 and T2 for a complete treatment of MR contrast.  相似文献   

3.
Tissues with very short transverse relaxation time (T2) cannot be detected using conventional magnetic resonance (MR) sequences due to the rapid decay of excited MR signals. In this work, a multiecho sequence employing half-pulse excitation and spiral sampling was developed for ultrashort echo time (UTE) imaging of tissues with short T2. Spiral readout gradients were measured and precompensated to reduce gradient distortions due to eddy currents and gradient anisotropy. The effects of spatial blurring due to fast signal decay were investigated experimentally through spiral UTE (SUTE) imaging of rubber bands with different spiral sampling duration. The unwanted long T2 signals were suppressed through the use of an inversion pulse and nulling, and/or subtraction of a later echo image from the initial one. This technique has been applied to imaging of the short T2 components in brain white matter, knee cartilage, bone and carotid vessel wall of normal volunteers at 1.5 T. Preliminary results show high spatial resolution and excellent image contrast for a variety of short T2 tissues in the human body under a relatively short scan time. A quantitative comparison was also made between radial UTE and SUTE in terms of signal-to-noise ratio efficiency.  相似文献   

4.
In this paper, we aimed to investigate the feasibility of direct visualization of myelin, including myelin lipid and myelin basic protein (MBP), using two-dimensional ultrashort echo time (2D UTE) sequences and utilize phase information as a contrast mechanism in phantoms and in volunteers. The standard UTE sequence was used to detect both myelin and long T2 signal. An adiabatic inversion recovery UTE (IR-UTE) sequence was used to selectively detect myelin by suppressing signal from long T2 water protons. Magnitude and phase imaging and T2* were investigated on myelin lipid and MBP in the forms of lyophilized powders as well as paste-like phantoms with the powder mixed with D2O, and rubber phantoms as well as healthy volunteers. Contrast to noise ratio (CNR) between white and gray matter was measured. Both magnitude and phase images were generated for myelin and rubber phantoms as well white matter in vivo using the IR-UTE sequence. T2* values of ~ 300 μs were comparable for myelin paste phantoms and the short T2* component in white matter of the brain in vivo. Mean CNR between white and gray matter in IR-UTE imaging was increased from − 7.3 for the magnitude images to 57.4 for the phase images. The preliminary results suggest that the IR-UTE sequence allows simultaneous magnitude and phase imaging of myelin in vitro and in vivo.  相似文献   

5.
Fast and precise T1 imaging using a TOMROP sequence   总被引:3,自引:1,他引:2  
Proton spin-lattice (T1) relaxation time images were computed from a data set of 32 gradient-echo images acquired with a fast TOMROP (T One by Multiple Read Out Pulses) sequence using a standard whole-body MR imager operating at 64 MHz. The data acquisition and analysis method which permits accurate pixel-by-pixel estimation of T1 relaxation times is described. As an example, the T1 parameter image of a human brain is shown demonstrating an excellent image quality. For white and gray brain matter, the measured longitudinal relaxation processes are adequately described by a single-component least-squares fit, while more than one proton component has to be considered for fatty tissue. A quantitative analysis yielded T1 values of 547 +/- 36 msec and 944 +/- 73 msec for white and gray matter, respectively.  相似文献   

6.
Proton relaxation time measurements were performed on a standard whole body MR imager operating at 1.5 T using a conventional surface coil of the manufacturer. A combined CP/CPMG multiecho, multislice sequence was used for the T1 and T2 relaxation time measurements. Two repetition times of 2000 ms (30 echoes) and 600 ms (2 echoes) with 180 degrees-pulse intervals of 2 tau = 22 ms were interleaved in this sequence. A two-exponential T2 analysis of each pixel of the spin-echo images was computed in a case of an acoustic neurinoma. The two-exponential images show a "short" component (T2S) due to white and gray matter and a "long" component (T2S) due to the cerebrospinal fluid. In the fatty tissue two components with T2S = 35 +/- 3 ms and T2L = 164 +/- 7 ms were measured. Comparing with Gd-DTPA imaging the relaxation time images show a clear differentiation of vital tumor tissue and cerebrospinal fluid.  相似文献   

7.
The use of chemical shift imaging for fat and water quantitation and differential measurement of relaxation times for the fat and water component is demonstrated using a hybrid technique. The efficacy of the imaging technique for fat and water quantitation has been tested by comparing the results of imaging to the results of volumetric measurements in phantoms with oil and water homogeneously mixed, fat extraction in ground meat of different grades, and biopsy in preliminary clinical studies. Good correlation is found between the fat and water content measured by imaging and that measured by other means except for the inability to differentiate unsaturated fat protons from water protons. Longitudinal (T1) and transverse (T2) relaxation times for water and fat are also shown to be measurable independently when fat and water signal are suppressed accordingly. The independently measured relaxation times correspond closely to those of the pure samples except that unsaturated protons give decreased water relaxation estimates.  相似文献   

8.
Dairy cream, as a suspension of lipid droplets in water, is a potentially useful magnetic resonance imaging (MRI) phantom material and an interesting material for studying fundamental relaxation mechanisms. Here we report a strong increase in the transverse relaxation rates with field strength for both the water and lipid protons in dairy cream. Also, studies at 4.7 T reveal a nonlinear response of transverse relaxation rates with increasing concentration of a common gadolinium (Gd)-based contrast agent, including an initial decrease of water relaxation rates as measured with Hahn spin echoes at the lower Gd concentrations. The results are treated within the framework of a model in which the magnetic susceptibility difference between the lipid droplets and the aqueous phase plays the prominent role for transverse relaxation. Second-order polynomial fits of the water proton transverse relaxation rate dependence on field strength and on Gd concentration at 4.7 T provided experimental parameters from which model parameters are extracted and compared with expectations available from the literature.  相似文献   

9.
In vivo measurement of T2 relaxation times in multiple sclerosis (MS) lesions by magnetic resonance imaging (MRI) is potentially useful for the evaluation of the disease activity. Seven patients with definite MS were investigated over a period of three years (19 examinations), using a whole-body MRI scanner operating at 0.15 T with a specially designed high-power radio-frequency head coil. A modified CPMG sequence with a 180 degree pulse interval of TE = 6 msec and 128 echoes was used for the T2 relaxation measurement of the areas of increased signal (AIS) and white matter (WM). A biexponential T2 analysis of each pixel of the spin-echo images was computed. The T2 relaxation processes were found to be a monoexponential function in WM. The T2 relaxation times of apparently normal white matter in MS patients was significantly longer than in control subjects. The T2 relaxation curves of the AIS were found in most cases to fit a biexponential function characterized by a short and a long T2. T2 long relaxation times of AIS were spread out over a wide range (150-560 msec). The study of T2 long histograms shows that some AIS can be divided into two or three parts depending on the T2 long values. Each of these parts may correspond to a pathological process such as edema, demyelination and gliosis. Evolution of T2 relaxation times over a period of time cannot as yet be correlated with modifications in the clinical state.  相似文献   

10.
Biexponential T(2) relaxation of the localized water signal can be used for segmentation of spectroscopic volumes. To assess the specificity of the components an iterative relaxation measurement of the localized water signal (STEAM, 12 echo times, geometric spacing from 30 ms to 2000 ms) was combined with magnetization transfer (MT) saturation (40 single lobe pulses, 12 ms duration, 1440 degrees nominal flip angle, 1 kHz offset, repeated every 30 ms). Voxels including CSF were examined in parietal cortex and periventricular parietal white matter (10 each), as well as 13 voxels in central white matter and 16 T(1)-hypointense non-enhancing multiple sclerosis lesions without CSF inclusion. Biexponential models (excluding myelin water) were fitted to the relaxation data. In periventricular VOIs the component of long T(2) (1736 +/- 168 ms) that is attributed to CSF was not affected by MT. In cortical VOIs this component had markedly shorter T(2)'s (961 +/- 239 ms) and showed both attenuation and prolongation with MT, indicating contributions from tissue. MS lesions and central WM showed a second tissue component of intermediate T(2) (160-410 ms). In white matter similar MT attenuation indicated strong exchange between the two tissue components, prohibiting segmentation. In MS lesions, however, markedly less MT of the intermediate component was found, which is consistent with decreased cellularity and exchange in a region that is large compared to diffusion motion.  相似文献   

11.
Rotating-frame cross relaxation for a pair of protons rotating in a spherical molecule with external relaxation is examined theoretically. The results of this study allow us to model intensities in 1D ROE and 2D ROESY spectra of protons in the presence of a paramagnetic metal ion. External relaxation moves the threshold correlation time for spin diffusion to longer times. In contrast to the effect of external relaxation on longitudinal cross relaxation (NOESY), the range of observable transverse cross relaxation (ROESY) expands with increasing external relaxation. At the same time, external relaxation compresses the overall time scale for cross-peak evolution. The initial slopes of cross-peak evolution are unaffected by external relaxation, but are sensitive to the rotational correlation time of the proton pair. Very short mixing times are necessary for accurate estimation of the initial Slopes.  相似文献   

12.
Multi-echo Carr-Purcell-Meiboom-Gill (CPMG) imaging sequences were implemented on 1.5 T and 4.0 T imaging systems to test their ability to measure in vivo multi-component T2 relaxation behavior in normal guinea pig brain. The known dependence of accurate T2 measurements on the signal-to-noise ratio (SNR) was explored in vivo by comparing T2 decay data obtained using three methods to increase SNR (improved RF coil design, signal averaging and increased magnetic field strength). Good agreement between T2 values of nickel-doped agarose phantoms was found between imaging and spectroscopic methods. T2 values were determined for gray matter (GM) and white matter (WM) locations from images of guinea pig brain in vivo. T2 measurements of GM were found to be monoexponential at both field strengths. The mean T2 times for GM were 71 ms at 1.5 T, and 53 ms at 4.0T. The highest average SNR was achieved using an improved RF coil at 4.0T. In this case, two peaks were extracted in WM, a "short" T2 peak at approximately 6 ms, and a "medium" T2 peak at approximately 48 ms. T2 values in GM and the major component of WM were significantly decreased at 4.0T compared to 1.5 T. The improved SNR attained with this optimized imaging protocol at 4.0T has allowed for the first time extraction of the myelin-sensitive T2 component of WM in animal brain in vivo.  相似文献   

13.
The objective of this study was to implement a clinically relevant multi-slice multi-echo imaging sequence in order to quantify multi-component T2 relaxation times for normal volunteers at both 1.5 and 3 T. Multi-echo data were fitted using a nonnegative least square algorithm. Twelve echo data with nonlinear echo sampling were acquired using a receive-only eight-channel phased array coil and volume head coil for phantoms and normal volunteers, and compared to 32-echo data with linear echo sampling. It was observed that the performance of the 180 degrees refocusing trains was more spatially uniform for the receive-only eight-channel phased array coil than for the head coil, particularly at 3 T. The phantom study showed that the estimated T2 relaxation times were accurate and reproducible for both single- and multi-slice acquisition from a commercial phantom with known T2 relaxation times. Short T2 components (T2 <50 ms) were mainly observed within the white matter for normal volunteers, and the fraction of short T2 water components (i.e., myelin water) was 7-12% of total water. It was observed that the calculated myelin water fraction map from the nonlinearly sampled 12-echo data was comparable with that from the linearly sampled 32-echo data. Quantification of T2 relaxation times from multi-slice images was accomplished with a clinically acceptable scan times (16 min) for normal volunteers by using a nonselective T2 prep imaging sequence. The use of the eight-channel head coil involved more accurate quantification of T2 relaxation times particularly when the number of echoes was limited.  相似文献   

14.
Multiple sclerosis (MS) causes demyelinating lesions in the white matter and increased iron deposition in the subcortical gray matter. Myelin protons have an extremely short T2* (< 1 ms) and are not directly detected with conventional clinical magnetic resonance (MR) imaging sequences. Iron deposition also reduces T2*, leading to reduced signal on clinical sequences. In this study we tested the hypothesis that the inversion recovery ultrashort echo time (IR-UTE) pulse sequence can directly and simultaneously image myelin and iron deposition using a clinical 3 T scanner. The technique was first validated on a synthetic myelin phantom (myelin powder in D2O) and a Feridex iron phantom. This was followed by studies of cadaveric MS specimens, healthy volunteers and MS patients. UTE imaging of the synthetic myelin phantom showed an excellent bi-component signal decay with two populations of protons, one with a T2* of 1.2 ms (residual water protons) and the other with a T2* of 290 μs (myelin protons). IR-UTE imaging shows sensitivity to a wide range of iron concentrations from 0.5 to ~ 30 mM. The IR-UTE signal from white matter of the brain of healthy volunteers shows a rapid signal decay with a short T2* of ~ 300 μs, consistent with the T2* values of myelin protons in the synthetic myelin phantom. IR-UTE imaging in MS brain specimens and patients showed multiple white matter lesions as well as areas of high signal in subcortical gray matter. This in specimens corresponded in position to Perl's diaminobenzide staining results, consistent with increased iron deposition. IR-UTE imaging simultaneously detects lesions with myelin loss in the white matter and iron deposition in the gray matter.  相似文献   

15.
Serial MR scans were performed with the 2DFT imaging method and the filtered backprojection imaging method on 12 patients with multiple sclerosis in acute phase, 4 in a relapsing/remitting form, and 8 in a progressive form, before, during and after ACTH treatment. Both T1 and T2mono relaxation times, obtained by fitting transverse magnetization decay curves with a monoexponential function within the apparently normal white matter and the areas of increased signal, were measured. With the backprojection method it was possible to fit the transverse magnetization decay curve with a biexponential function and obtain T2long and T2short relaxation times. The T2mono and T1 relaxation times of the apparently normal white matter were significantly different from those obtained for volunteers, but no significant differences were found before, during, or after treatment. The transverse magnetization decay curves of the areas of increased signal were better fitted by a biexponential function. No significant changes in these relaxation times were observed after ACTH treatment. These results argue against an anti-oedematous action of ACTH and may suggest that it has an immunosuppressant effect.  相似文献   

16.
The purpose of our study is to trace in vivo and during the perinatal period, the brain maturation process with exhaustive measures of the T2 relaxation time values. We also compared regional myelination progress with variations of the relaxation time values and of brain signal. T2 relaxation times were measured in 7 healthy premature newborns at the post-conceptional age of 37 weeks, using a Carr-Purcell-Meiboom-Gill sequence (echo time 60 to 150 ms), on a 2.35 Tesla Spectro-Imaging MR system. A total of 62 measures were defined for each subject within the brain stem, the basal ganglia and the hemispheric gray and white matter. The mean and standard deviation of the T2 values were calculated for each location. Regional T2 values changes and brain signal variations were studied. In comparison to the adult ones, the T2 relaxation time values of both gray and white matter were highly prolonged and a reversed ratio between gray and white matter was found. The maturational phenomena might be regionally correlated with a T2 value shortening. Significant T2 variations in the brainstem (p < 0.02), the mesencephalon (p < 0.05), the thalami (p < 0.01), the lentiform nuclei (p < 0.01) and the caudate nuclei (p < 0.02) were observed at an earlier time than they were visible on T2-weighted images. In the cerebral hemispheres, T2 values increased from the occipital white matter to parietal, temporal and frontal white matter (p < 0.05) and in the frontal and occipital areas from periventricular to subcortical white matter (p < 0.01). Maturational progress was earlier and better displayed with T2 measurements and T2 mapping. During the perinatal period, the measurements and analysis of T2 values revealed brain regional differences not discernible with T2-weighted images. It might be a more sensitive indicator for assessment of brain maturation.  相似文献   

17.
用核弛豫研究了溶液中甲基丙烯酸甲酯-萘乙烯共聚物体系中高分子链间的凝聚态结构.通过对溶液中甲基丙烯酸甲酯-萘乙烯共聚物的变温13CNMR自旋-晶格弛豫的研究,发现此体系具有类似小分子在溶液中的弛豫特性.变温1HNMR自旋-自旅弛豫呈现出双指数特性,弛豫快的部分随温度升高而减少对应于聚合物链间凝聚缠结的解缠,当温度继续升高时,主链的这种组分又开始增加,说明主链中形成新的缠结.研究结果还表明,在这种共聚物中,例基萘环的叠加较少.  相似文献   

18.
Regional variation in rat brain proton relaxation times and water content   总被引:1,自引:0,他引:1  
Relaxation times (T1 and T2) and water content are measured in frontal cortex, amygdaloid cortex, hippocampus, mid-brain and cerebellum of rat brain. Differences are found in relaxation times, between areas containing a mixture of grey and white matter, and grey matter only. Differences were also found between certain grey matter areas. Relaxation times correlated with water content.  相似文献   

19.
This study investigates the effects of developmental stage and muscle type on the mobility and distribution of water within skeletal muscles, using low-field (1)H-NMR transverse relaxation measurements in vitro on four different porcine muscles (M. longissimus dorsi, M. semitendinosus, M. biceps femoris, M. vastus intermedius) from a total of 48 pigs slaughtered at various weight classes between 25 kg and 150 kg. Principal component analysis (PCA) revealed effects of both slaughter weight and muscle type on the transverse relaxation decay. Independent of developmental stage and muscle type, distributed exponential analysis of the NMR T(2) relaxation data imparted the existence of three distinct water populations, T(2b), T(21), and T(22), with relaxation times of approximately 1-10, 45-120, and 200-500 ms, respectively. The most profound change during muscle growth was a shift toward faster relaxation in the intermediate time constant, T(21). It decreased by approx. 24% in all four muscle types during the period from 25 to 150 kg live weight. Determination of dry matter, fat, and protein content in the muscles showed that the changes in relaxation time of the intermediate time constant, T(21), during growth should be ascribed mainly to a change in protein content, as the protein content explained 77% of the variation in the T(21) time constant. Partial least squares (PLS) regression revealed validated correlations in the region of 0.58 to 0.77 between NMR transverse relaxation data and muscle development for all the four muscle types, which indicates that NMR relaxation measurements may be used in the prediction of muscle developmental stage.  相似文献   

20.
In vivo relaxation times and relative spin densities of gray matter (GM) and white matter (WM) of rat spinal cord were measured. Inductively coupled implanted RF coil was used to improve the signal-to-noise ratio required for making these measurements. The estimated relaxation times (in milliseconds) are: T1(GM) = 1021+/-93, T2(GM) = 64+/-3.4, T1(WM) = 1089+/-126, and T2(WM) = 79+/-6.9. The estimated relative spin densities are: rho(GM) = (60+/-2.3)% and rho(WM) = (40+/-2.1)%. The T1 values of GM and white matter are not statistically different. However, the differences in T2 values and spin densities of GM and WM are statistically significant. These in vivo measurements indicate that the observed contrast between GM and WM in spinal cord MR images mainly arises from the differences in the spin density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号