首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vizing conjectured that γ(GH)≥γ(G)γ(H) for every pair G,H of graphs, where “” is the Cartesian product, and γ(G) is the domination number of the graph G. Denote by γi(G) the maximum, over all independent sets I in G, of the minimal number of vertices needed to dominate I. We prove that γ(GH)≥γi(G)γ(H). Since for chordal graphs γi=γ, this proves Vizing’s conjecture when G is chordal.  相似文献   

2.
3.
Rong Luo  Yue Zhao 《Discrete Mathematics》2009,309(9):2925-2929
In 1968, Vizing conjectured that, if G is a Δ-critical graph with n vertices, then , where α(G) is the independence number of G. In this note, we apply Vizing and Vizing-like adjacency lemmas to this problem and obtain better bounds for Δ∈{7,…,19}.  相似文献   

4.
Jensen and Toft conjectured that for a graph with an even number of vertices, either the minimum number of colours in a proper edge colouring is equal to the maximum vertex degree, or this is true in its complement. We prove a fractional version of this conjecture.  相似文献   

5.
The bound known as Hunter’s bound states that , where T designates the heaviest spanning tree of the graph on n nodes with edge weights pi,j. We prove that Hunter’s bound is optimal if and only if the input probabilities are given on a tree.  相似文献   

6.
Let G be a planar graph of maximum degree 6. In this paper we prove that if G does not contain either a 6-cycle, or a 4-cycle with a chord, or a 5- and 6-cycle with a chord, then χ(G)=6, where χ(G) denotes the chromatic index of G.  相似文献   

7.
8.
9.
10.
Guoli Ding 《Discrete Mathematics》2009,309(5):1118-1122
A well known conjecture of Hadwiger asserts that Kn+1 is the only minor minimal graph of chromatic number greater than n. In this paper, all minor minimal graphs of chromatic index greater than n are determined.  相似文献   

11.
In this paper we discuss the existence of lower bounds for the chromatic number of graphs in terms of the average degree or the coloring number of graphs. We obtain a lower bound for the chromatic number of K1,t-free graphs in terms of the maximum degree and show that the bound is tight. For any tree T, we obtain a lower bound for the chromatic number of any K2,t-free and T-free graph in terms of its average degree. This answers affirmatively a modified version of Problem 4.3 in [T.R. Jensen, B. Toft, Graph Coloring Problems, Wiley, New York, 1995]. More generally, we discuss δ-bounded families of graphs and then we obtain a necessary and sufficient condition for a family of graphs to be a δ-bounded family in terms of its induced bipartite Turán number. Our last bound is in terms of forbidden induced even cycles in graphs; it extends a result in [S.E. Markossian, G.S. Gasparian, B.A. Reed, β-perfect graphs, J. Combin. Theory Ser. B 67 (1996) 1–11].  相似文献   

12.
Let G be a multigraph with maximum degree Δ and maximum edge multiplicity μ. Vizing’s Theorem says that the chromatic index of G is at most Δ+μ. If G is bipartite its chromatic index is well known to be exactly Δ. Otherwise G contains an odd cycle and, by a theorem of Goldberg, its chromatic index is at most , where go denotes odd-girth. Here we prove that a connected G achieves Goldberg’s upper bound if and only if G=μCgo and (go−1)∣2(μ−1). The question of whether or not G achieves Vizing’s upper bound is NP-hard for μ=1, but for μ≥2 we have reason to believe that this may be answerable in polynomial time. We prove that, with the exception of μK3, every connected G with μ≥2 which achieves Vizing’s upper bound must contain a specific dense subgraph on five vertices. Additionally, if Δμ2, we prove that G must contain K5, so G must be nonplanar. These results regarding Vizing’s upper bound extend work by Kierstead, whose proof technique influences us greatly here.  相似文献   

13.
In this paper, we prove several new results on chromatic index critical graphs. We also prove that if G is a Δ(≥4)-critical graph, then
  相似文献   

14.
15.
Let G be a multigraph with vertex set V(G). An edge coloring C of G is called an edge-cover-coloring if each color appears at least once at each vertex vV(G). The maximum positive integer k such that G has a k-edge-cover-coloring is called the edge cover chromatic index of G and is denoted by . It is well known that , where μ(v) is the multiplicity of v and δ(G) is the minimum degree of G. We improve this lower bound to δ(G)−1 when 2≤δ(G)≤5. Furthermore we show that this lower bound is best possible.  相似文献   

16.
17.
This paper introduces three new upper bounds on the chromatic number, without making any assumptions on the graph structure. The first one, ξ, is based on the number of edges and nodes, and is to be applied to any connected component of the graph, whereas ζ and η are based on the degree of the nodes in the graph. The computation complexity of the three-bound computation is assessed. Theoretical and computational comparisons are also made with five well-known bounds from the literature, which demonstrate the superiority of the new upper bounds.  相似文献   

18.
The strong chromatic index of a class of graphs   总被引:1,自引:0,他引:1  
The strong chromatic index of a graph G is the minimum integer k such that the edge set of G can be partitioned into k induced matchings. Faudree et al. [R.J. Faudree, R.H. Schelp, A. Gyárfás, Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205-211] proposed an open problem: If G is bipartite and if for each edge xyE(G), d(x)+d(y)≤5, then sχ(G)≤6. Let H0 be the graph obtained from a 5-cycle by adding a new vertex and joining it to two nonadjacent vertices of the 5-cycle. In this paper, we show that if G (not necessarily bipartite) is not isomorphic to H0 and d(x)+d(y)≤5 for any edge xy of G then sχ(G)≤6. The proof of the result implies a linear time algorithm to produce a strong edge coloring using at most 6 colors for such graphs.  相似文献   

19.
We give an inequality for the group chromatic number of a graph as an extension of Brooks’ Theorem. Moreover, we obtain a structural theorem for graphs satisfying the equality and discuss applications of the theorem.  相似文献   

20.
We study the minimum number of weights assigned to the edges of a graph G with no component K2 so that any two adjacent vertices have distinct sets of weights on their incident edges. The best possible upper bound on this parameter is proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号