首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The total chromatic number χT(G) of a graph G is the least number of colors needed to color the vertices and the edges of G such that no adjacent or incident elements receive the same color. The Total Coloring Conjecture(TCC) states that for every simple graph G, χT(G)≤Δ(G)+2. In this paper, we show that χT(G)=Δ(G)+1 for all pseudo-Halin graphs with Δ(G)=4 and 5.  相似文献   

2.
Let f(Δ,?μ) =?max {χ′(G) | Δ (G) =?Δ,?μ(G) =?μ} where χ′(G), Δ(G) and?μ(G) denote the the chromatic index, the maximum degree and the maximum multiplicity of the multigraph G, respectively. If Δ < 2μ, then Shannon’s bound implies that the gap between f(Δ,?μ) and Vizing’s bound Δ +?μ can be arbitrarily large. In this note, we prove that this is also the case for Δ ≥?2μ (see Theorem 4).  相似文献   

3.
Let G be a planar graph of maximum degree 6. In this paper we prove that if G does not contain either a 6-cycle, or a 4-cycle with a chord, or a 5- and 6-cycle with a chord, then χ(G)=6, where χ(G) denotes the chromatic index of G.  相似文献   

4.
Let denote the maximum average degree (over all subgraphs) of G and let χi(G) denote the injective chromatic number of G. We prove that if , then χi(G)≤Δ(G)+1; and if , then χi(G)=Δ(G). Suppose that G is a planar graph with girth g(G) and Δ(G)≥4. We prove that if g(G)≥9, then χi(G)≤Δ(G)+1; similarly, if g(G)≥13, then χi(G)=Δ(G).  相似文献   

5.
Let G be a multigraph with maximum degree Δ and maximum edge multiplicity μ. Vizing’s Theorem says that the chromatic index of G is at most Δ+μ. If G is bipartite its chromatic index is well known to be exactly Δ. Otherwise G contains an odd cycle and, by a theorem of Goldberg, its chromatic index is at most , where go denotes odd-girth. Here we prove that a connected G achieves Goldberg’s upper bound if and only if G=μCgo and (go−1)∣2(μ−1). The question of whether or not G achieves Vizing’s upper bound is NP-hard for μ=1, but for μ≥2 we have reason to believe that this may be answerable in polynomial time. We prove that, with the exception of μK3, every connected G with μ≥2 which achieves Vizing’s upper bound must contain a specific dense subgraph on five vertices. Additionally, if Δμ2, we prove that G must contain K5, so G must be nonplanar. These results regarding Vizing’s upper bound extend work by Kierstead, whose proof technique influences us greatly here.  相似文献   

6.
Acyclic chromatic indices of planar graphs with large girth   总被引:1,自引:0,他引:1  
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a(G) of G is the smallest k such that G has an acyclic edge coloring using k colors.In this paper, we prove that every planar graph G with girth g(G) and maximum degree Δ has a(G)=Δ if there exists a pair (k,m)∈{(3,11),(4,8),(5,7),(8,6)} such that G satisfies Δk and g(G)≥m.  相似文献   

7.
In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph G into a new graph μ(G), which is called the Mycielskian of G. This paper investigates the vertex-connectivity κ(μ(G)) and edge-connectivity κ(μ(G)) of μ(G) . We show that κ(μ(G))=min{δ(μ(G)),2κ(G)+1} and κ(μ(G))=δ(μ(G)).  相似文献   

8.
The strong chromatic index of a class of graphs   总被引:1,自引:0,他引:1  
The strong chromatic index of a graph G is the minimum integer k such that the edge set of G can be partitioned into k induced matchings. Faudree et al. [R.J. Faudree, R.H. Schelp, A. Gyárfás, Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205-211] proposed an open problem: If G is bipartite and if for each edge xyE(G), d(x)+d(y)≤5, then sχ(G)≤6. Let H0 be the graph obtained from a 5-cycle by adding a new vertex and joining it to two nonadjacent vertices of the 5-cycle. In this paper, we show that if G (not necessarily bipartite) is not isomorphic to H0 and d(x)+d(y)≤5 for any edge xy of G then sχ(G)≤6. The proof of the result implies a linear time algorithm to produce a strong edge coloring using at most 6 colors for such graphs.  相似文献   

9.
A coloring of a graph G is injective if its restriction to the neighborhood of any vertex is injective. The injective chromatic numberχi(G) of a graph G is the least k such that there is an injective k-coloring. In this paper we prove that if G is a planar graph with girth g and maximum degree Δ, then (1) χi(G)=Δ if either g≥20 and Δ≥3, or g≥7 and Δ≥71; (2) χi(G)≤Δ+1 if g≥11; (3) χi(G)≤Δ+2 if g≥8.  相似文献   

10.
The total chromatic number of a graph G, denoted by χ(G), is the minimum number of colors needed to color the vertices and edges of G such that no two adjacent or incident elements get the same color. It is known that if a planar graph G has maximum degree Δ≥9, then χ(G)=Δ+1. In this paper, we prove that if G is a planar graph with maximum degree 7, and for every vertex v, there is an integer kv∈{3,4,5,6} so that v is not incident with any kv-cycle, then χ(G)=8.  相似文献   

11.
Let G be any graph, and also let Δ(G), χ(G) and α(G) denote the maximum degree, the chromatic number and the independence number of G, respectively. A chromatic coloring of G is a proper coloring of G using χ(G) colors. A color class in a proper coloring of G is maximum if it has size α(G). In this paper, we prove that if a graph G (not necessarily connected) satisfies χ(G)≥Δ(G), then there exists a chromatic coloring of G in which some color class is maximum. This cannot be guaranteed if χ(G)<Δ(G). We shall also give some other extensions.  相似文献   

12.
Improved bounds on coloring of graphs   总被引:1,自引:0,他引:1  
  相似文献   

13.
Let M be a multigraph. Vizing (Kibernetika (Kiev)1 (1965), 29–39) proved that χ′(M)≤Δ(M)+μ(M). Here it is proved that if χ′(M)≥Δ(M)+s, where 12(μ(M) + 1) < s then M contains a 2s-sided triangle. In particular, (C′) if μ(M)≤2 and M does not contain a 4-sided triangle then χ′(M)≤Δ(M) + 1. Javedekar (J. Graph Theory4 (1980), 265–268) had conjectured that (C) if G is a simple graph that does not induce K1,3 or K5?e then χ(G)≤ω(G) + 1. The author and Schmerl (Discrete Math.45 (1983), 277–285) proved that (C′) implies (C); thus Javedekar's conjecture is true.  相似文献   

14.
Planar graphs without 5-cycles or without 6-cycles   总被引:1,自引:0,他引:1  
Qin Ma  Xiao Yu 《Discrete Mathematics》2009,309(10):2998-1187
Let G be a planar graph without 5-cycles or without 6-cycles. In this paper, we prove that if G is connected and δ(G)≥2, then there exists an edge xyE(G) such that d(x)+d(y)≤9, or there is a 2-alternating cycle. By using the above result, we obtain that (1) its linear 2-arboricity , (2) its list total chromatic number is Δ(G)+1 if Δ(G)≥8, and (3) its list edge chromatic number is Δ(G) if Δ(G)≥8.  相似文献   

15.
Let G be a planar graph without adjacent 3-cycles, that is, two cycles of length 3 are not incident with a common edge. In this paper, it is proved that the total coloring conjecture is true for G; moreover, if Δ(G)≥9, then the total chromatic number χ(G) of G is Δ(G)+1. Some other related results are obtained, too.  相似文献   

16.
Brooks' Theorem says that if for a graph G,Δ(G)=n, then G is n-colourable, unless (1) n=2 and G has an odd cycle as a component, or (2) n>2 and Kn+1 is a component of G. In this paper we prove that if a graph G has none of some three graphs (K1,3;K5?e and H) as an induced subgraph and if Δ(G)?6 and d(G)<Δ(G), then χ(G)<Δ(G). Also we give examples to show that the hypothesis Δ(G)?6 can not be non-trivially relaxed and the graph K5?e can not be removed from the hypothesis. Moreover, for a graph G with none of K1,3;K5?e and H as an induced subgraph, we verify Borodin and Kostochka's conjecture that if for a graph G,Δ(G)?9 and d(G)<Δ(G), then χ(G)<Δ(G).  相似文献   

17.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). Let Δ=Δ(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by Kn,n. Alon, McDiarmid and Reed observed that a(Kp−1,p−1)=p for every prime p. In this paper we prove that a(Kp,p)≤p+2=Δ+2 when p is prime. Basavaraju, Chandran and Kummini proved that a(Kn,n)≥n+2=Δ+2 when n is odd, which combined with our result implies that a(Kp,p)=p+2=Δ+2 when p is an odd prime. Moreover we show that if we remove any edge from Kp,p, the resulting graph is acyclically Δ+1=p+1-edge-colorable.  相似文献   

18.
Let α(G) and χ(G) denote the independence number and chromatic number of a graph G, respectively. Let G×H be the direct product graph of graphs G and H. We show that if G and H are circular graphs, Kneser graphs, or powers of cycles, then α(G×H)=max{α(G)|V(H)|,α(H)|V(G)|} and χ(G×H)=min{χ(G),χ(H)}.  相似文献   

19.
Vizing conjectured that γ(GH)≥γ(G)γ(H) for every pair G,H of graphs, where “” is the Cartesian product, and γ(G) is the domination number of the graph G. Denote by γi(G) the maximum, over all independent sets I in G, of the minimal number of vertices needed to dominate I. We prove that γ(GH)≥γi(G)γ(H). Since for chordal graphs γi=γ, this proves Vizing’s conjecture when G is chordal.  相似文献   

20.
As an edge variant of the well-known irregularity strength of a graph G=(V,E) we investigate edge irregular total labellings, i.e. functions f:VE→{1,2,…,k} such that f(u)+f(uv)+f(v)≠f(u)+f(uv)+f(v) for every pair of different edges uv,uvE. The smallest possible k is the total edge irregularity strength of G. Confirming a conjecture by Ivan?o and Jendrol’ for a large class of graphs we prove that the natural lower bound is tight for every graph of order n, size m and maximum degree Δ with m>111000Δ. This also implies that the probability that a random graph from G(n,p(n)) satisfies the Ivan?o-Jendrol’ Conjecture tends to 1 as n for all functions p∈[0,1]N. Furthermore, we prove that is an upper bound for every graph G of order n and size m≥3 whose edges are not all incident to a single vertex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号