首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Experimental observations show that quasi-isotropic materials, such as N-axial fibre-reinforced composites and woven materials, exhibit various degrees of anisotropy in elasticity and strength, and the anisotropy in strength is normally stronger than that in elasticity. In view of some available experimental data and based on the general formulation of the constitutive equations and failure criteria of quasi-isotropic materials established by using the theory of representations for tensor functions, we postulate several applicable models of the constitutive equations and strength for 3-and 4-axial quasi-isotropic materials to reveal the anisotropic effects. In a continued work (Part II), the anisotropic effect in strength of an infinitely large plate with a single elliptical hole or crack is studied, and the proposed stiffness and strength models are verified in terms of micro-mechanical analyses.Project supported by the National Natural Science Foundation of China and the State Education Commission Foundation of China  相似文献   

2.
This paper is the sequel of a companion Part I paper devoted to the constitutive equations and to the quasi-static behavior of a second strain gradient material model with second velocity gradient inertia. In the present Part II paper, a multi-cell homogenization procedure (developed in the Part I paper) is applied to a nonhomogeneous body modelled as a simple material cell system, in conjunction with the principle of virtual work (PVW) for inertial actions (i.e. momenta and inertia forces), which at the macro-scale level takes on the typical format as for a second velocity gradient inertia material model. The latter (macro-scale) PVW is used to determine the equilibrium equations relating the (ordinary, double and triple) generalized momenta to the inertia forces. As a consequence of the surface effects, the latter inertia forces include (ordinary) inertia body forces within the bulk material, as well as (ordinary and double) inertia surface tractions on the boundary layer and (ordinary) inertia line tractions on the edge line rod; they all depend on the acceleration in a nonstandard way, but the classical laws are recovered in the case of no higher order inertia. The classical linear and angular momentum theorems are extended to the present context of second velocity gradient inertia, showing that the extended theorems—used in conjunction with the Cauchy traction theorem—lead to the local force and moment (stress symmetry) motion equations, just like for a classical continuum. A gradient elasticity theory is proposed, whereby the dynamic evolution problem for assigned initial and boundary conditions is shown to admit a Hamilton-type variational principle; the uniqueness of the solution is also discussed. A few simple applications to wave propagation and dispersion problems are presented. The paper indicates the correct way to describe the inertia forces in the presence of higher order inertia; it extends and improves previous findings by the author [Polizzotto, C., 2012. A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49, 2121–2137]. Overall conclusions are drawn at the end of the paper.  相似文献   

3.
ANISOTROPICEFFECTSOFQUASI-ISOTROPICCOMPOSITES(I)──MODELLINGZhengQuanshui(郑泉水),FangHuiyu(方辉宇)(DepartmentofEngineeringMechanics...  相似文献   

4.
In this paper, an asymmetric theory of nonlocal elasticity with nonlocal body couple is developed on the basis of the axiom system in nonlocal continuum field theory. The Galileo invariance is used for determining the explicit form of the constitutive equations. It is shown that both continuum field theory and quasicontinuum theory give the same constitutive equations and field equations for the general theory of nonlocal elasticity. Finally, the relations among nonlocal theory, couple stress theory, and higher gradient theory are investigated.  相似文献   

5.
6.
In this paper the mathematical modeling of discontinuities using the discrete approximation and the continuum approximation with weak discontinuities is presented. First, the kinematics of discontinuities is discussed, then two constitutive models based on the continuum damage mechanics theory are developed. The first model is an isotropic damage model and is used in the discrete approximation. The second model is an anisotropic damage model and is used in the continuum approximation. These models are characterized for weighing the mode of failure in the failure criterion. An energy analysis is proposed to establish the equations that relate the parameters of both constitutive models; the fulfillment of the involved equations guarantee that both models are energetically equivalent. It is concluded that the proposed models are suitable to reproduce the constitutive behavior of discontinuities.  相似文献   

7.
Up to now, the analysis on anisotropic effects of quasi-isotropic composites to material structures has not been found in literatures. In the present paper the strength model for triaxial woven materials proposed in Part (I) [1] is applied to study the problems of an infinitely large plate of triaxial woven material containing either an elliptic hole or a crack. To the elliptic hole problem the remote critical loading as a function of the geometric parameters of woven materials is analysed, and to the crack problem, the cracking orientation is examined. Finally, the elasticity and strength models for a triaxial woven material proposed in Part(I) are verified in terms of micro-mechanical analysis.Project supported by the National Natural Science Foundation of China and the State Education Commission Foundation of China  相似文献   

8.
Gradient theories, as a regularized continuum mechanics approach, have found wide applications for modeling strain localization failure process. This paper presents a second gradient stress–strain damage elasticity theory based upon the method of virtual power. The theory considers the strain gradient and its conjugated double stresses. Instead of introducing an intrinsic material length scale into the constitutive law in an ad hoc fashion, a microstructural granular mechanics approach is applied to derive the higher-order constitutive coefficients such that the internal length scale parameter reflects the natural granularity of the underlying material microstructure. The derivations of the required damage constitutive relationships, the strong form governing equations as well as its weak form for the second gradient model are described. The recently popularized Element-Free Galerkin (EFG) method is then employed to discretize the weak form equilibrium equation for accommodating the resultant higher-order continuity requirements and further handling the mesh sensitivity problem. Numerical examples for shear band simulations show that the proposed second gradient continuum model can produce stable, accurate as well as mesh-size independent solutions without a priori assumption of the shear band path.  相似文献   

9.
In this paper, the concept of hypo-elasticity is generalized to the micropolar continuum theory, and the general forms of the constitutive equations of the micropolar hypo-elastic materials are presented. A new co-rotational objective rate whose spin is the micropolar gyration tensor is introduced which describes the deformation of the material in view of an observer attached to the micro-structure. As special case, simplified versions of the proposed constitutive equations are given in which the same fourth-order elasticity tensors are used as in the micropolar linear elasticity. A 2-D finite element formulation for large elastic deformation of micropolar hypo-elastic media based on the simplified constitutive equations in conjunction with Jaumann and gyration rates is presented. As an example, buckling of a shallow arc is examined, and it is shown that an increase in the micropolar material parameters results in an increase in the buckling load of the arc. Also, it is shown that micropolar effects become important for deformations taking place at small scales.  相似文献   

10.
Based on the microstructure-based constitutive model established in Part I, a detailed numerical investigation on the role of each microstructure parameter in the kinematical and kinetic evolution of polycrystalline SMA under axisymmetrical tension loading is performed. Some macroscopic constitutive features of stress-induced martensite transformation are discussed. The subject supported by the Research Grant Committee (RGC) of Hong Kong SAR, the National Natural Science Foundation of China and the Provincial Natural Science Foundation of Jiangxi Province of China  相似文献   

11.
许震宇  张若京  何伟 《力学季刊》2003,24(2):191-197
在某些纤维增强复合材料(FRC)中使用金属或高分子聚合物作为基体材料。在高温等情况下,这类材料具有明显的粘弹性特性。本文采用Riemann—Liouville形式的分数阶导数模型描述基体的粘弹性特性。通过渐近均匀化方法给出了预测FRC整体三维本构关系的解析表达式。给出了应用于基体具有Makris粘弹性关系的具体形式。以圆截面纤维正方形排列的情形为例,给出了等效模量随纤维体积比的变化曲线。结果说明,这类复合材料仍具有粘弹性特性,其整体粘弹性本构关系的弹性部分综合了纤维弹性和基体弹性的贡献,粘性部分来自基体粘性的贡献,复合材料具有和基体相同的粘性系数和分数阶。为分析微结构特征对整体特性的贡献,须求解两类局部问题。可以看出,在整体的等效模量中包含了局部变形的贡献,局部变形增加了复合材料的耦合刚度。  相似文献   

12.
Extremal paths for endochronic constitutive equations without using a yield surface and the corresponding principle of minimum potential work were obtained in Part I of this article. In this paper, the extremal properties of endochronic constitutive equation with a yield surface and the corresponding method for deformation bound analysis are proposed. An example is presented that demonstrates that the application of endochronic constitutive models to simplified analysis is not significantly different from classical models due to the derived extremal properties. The adopted constitutive model involves both nonlinear isotropic and kinematic hardening, which may provide more accurate results in simplified and bounding analysis.  相似文献   

13.
In this paper, nonlinear constitutive equations are deduced strictly according to the constitutive axioms of rational continuum mechanics. The existing judgments are modified and improved. The results show that the constitutive responses of nonlocal thermoelastic body are related to the curvature and higher order gradient of its material space, and there exists an antisymmetric stress whose average value in the domain occupied by thermoelastic body is equal to zero. The expressions of the antisymmetric stress and the nonlocal residuals are given. The conclusion that the directions of thermal conduction and temperature gradient are consistent is reached. In addition, the objectivity about the nonlocal residuals and the energy conservation law of nonlocal field is discussed briefly, and a formula for calculating the nonlocal residuals of energy changing with rigid motion of the spatial frame of reference is derived. Foundation item: the Natural Science Foundation of Province Jiangshu (BK97063)  相似文献   

14.
A thermodynamically consistent continuum theory for single-phase, single-constituent cohesionless granular materials is presented. The theory is motivated by dimensional inconsistencies of the original Goodman-Cowin theory [1–3]; it is constructed by removing these inconsistencies through the introduction of an internal length ℓ. Four constitutive models are proposed and discussed in which ℓ is (i) a material constant (Model I), (ii) an independent constitutive variable (Model II), (iii) an independent dynamic field quantity (Model III) and (iv) an independent kinematic field quantity (Model IV). Expressions of the constitutive variables emerging in the systems of the balance equations in these four models in thermodynamic equilibrium are deduced by use of a thermodynamic analysis based on the Müller-Liu entropy principle. Comments on the validity of these four models are given and discussed; the results presented in the current study show a more general formulation for the constitutive quantities and can be used as a basis for further continuum-based theoretical investigations on the behaviour of flowing granular materials. Numerical results regarding simple plane shear flows will be discussed and compared in Part II of this work.  相似文献   

15.
In this work, the response of a single-degree-of-freedom shape memory oscillator subjected to the excitation harmonic has been investigated. Equation of motion is formulated assuming a polynomial constitutive model to describe the restitution force of the oscillator. Here the method of multiple scales is used to obtain an approximate solution to the equations of the motion describing the modulation equations of amplitude and phase, and to investigate theoretically its stability. This work is presented in two parts. In Part I of this study we showed the modeling of the problem where the free vibration of the oscillator at low temperature is analyzed, where martensitic phase is stable. Part I also presents the investigation dynamics of the primary resonance of the pseudoelastic oscillator. Part II of the work is focused on the study in the secondary resonance of a pseudoelastic oscillator using the model developed in Part I. The analysis of the system in Part I as well as in Part II is accomplished numerically by means of phase portraits, Lyapunov exponents, power spectrum and Poincare maps. Frequency-response curves are constructed for shape memory oscillators for various excitation levels and detuning parameter. A rich class of solutions and bifurcations, including jump phenomena and saddle-node bifurcations, is found.  相似文献   

16.
In this paper, the concept of hyper-elasticity in the micropolar continuum theory is investigated. The restrictions on the fourth-order elasticity tensors are investigated. Using the representation theorems, a general form of constitutive equations for micropolar hyper-elastic isotropic materials is presented. As some special cases, generalizations of the neo-Hookean and Mooney-Rivlin type materials to the micropolar continuum theory are presented. The generalized constitutive equations reduce to those of the microplar linear elasticity theory when the deformations are infinitesimal. Also, Updated Lagrangian finite element formulations for the micropolar hyper-elastic materials are presented. Considering two planar examples, it is shown that an increase in the micropolar parameter results in the reduction of the deformation of the bodies. Also, it is shown that for a specimen with very small dimensions, e.g. in the micron level, the micropolar effects are more sensible. Furthermore, it is shown that the influence of the micropolar parameters is dependent not only on the size of the body, but also to its geometry and loading conditions. For the problems in which the deformation is very close to a homogeneous state, the micropolar effects are negligible.  相似文献   

17.
In this work, the response of a single-degree-of-freedom shape memory oscillator subjected to the excitation harmonic has been investigated. Equation of motion is formulated assuming a polynomial constitutive model to describe the restitution force of the oscillator. Here the method of multiple scales is used to obtain an approximate solution to the equations of the motion describing the modulation equations of amplitude and phase, and to investigate theoretically its stability. This work is presented in two parts. In Part I of this study we showed the modeling of the problem where the free vibration of the oscillator at low temperature is analyzed, where martensitic phase is stable. Part I also presents the investigation dynamics of the primary resonance of the pseudoelastic oscillator. Part II of the work is focused on the study in the secondary resonance of a pseudoelastic oscillator using the model developed in Part I. The analysis of the system in Part I as well as in Part II is accomplished numerically by means of phase portraits, Lyapunov exponents, power spectrum and Poincare maps. Frequency-response curves are constructed for shape memory oscillators for various excitation levels and detuning parameter. A rich class of solutions and bifurcations, including jump phenomena and saddle-node bifurcations, is found.  相似文献   

18.
The space-time continuum (4D-medium) is considered, and a generalized model of reversible dynamic thermoelasticity is constructed as a theory of elasticity of an ideal (defect-free) nonsymmetric 4D-medium that is transversally-isotropic with respect to the time coordinate. The definitions of stresses and strains for the space-time continuum are introduced. The constitutive equations of the medium model relating the components of nonsymmetric stress and distortion 4D-tensors are stated. Physical interpretations of all tensor components of the thermomechanical properties are given. The Lagrangian of the generalized model of coupled dynamic thermoelasticity is presented, and the Euler equations are analyzed. It is shown that the three Euler equations are generalized equations of motion of the dynamic classical thermoelasticity, and the last, fourth, equation is a generalized heat equation which allows one to predict the wave properties of heat. An energy-consistent version of thermoelasticity is constructed where the Duhamel-Neumann and Maxwell-Cattaneo laws (a nonclassical generalization of the Fourier law for the heat flow) are direct consequences of the constitutive equations.  相似文献   

19.
20.
A micromechanically based non-affine network model for finite rubber elasticity and viscoelasticity was discussed in Parts I and II [Miehe, C., Göktepe, S., Lulei, F., 2004. A micro-macro approach to rubber-like materials. Part I: The non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617-2660; Miehe, C., Göktepe, S., 2005. A micro-macro approach to rubber-like materials. Part II: Viscoelasticity model for polymer networks. J. Mech. Phys. Solids, published on-line, doi:10.1016/j.jmps.2005.04.006.] of this work. In this follow-up contribution, we further extend the micro-sphere network model such that it incorporates a deformation-induced softening commonly referred to as the Mullins effect. To this end, a continuum formulation is constructed by a superimposed modeling of a crosslink-to-crosslink (CC) and a particle-to-particle (PP) network. The former is described by the non-affine elastic network model proposed in Part I. The Mullins-type damage phenomenon is embedded into the PP network and micromechanically motivated by a breakdown of bonds between chains and filler particles. Key idea of the constitutive approach is a two-step procedure that includes (i) the set up of micromechanically based constitutive models for a single chain orientation and (ii) the definition of the macroscopic stress response by a directly evaluated homogenization of state variables defined on a micro-sphere of space orientations. In contrast to previous works on the Mullins effect, our formulation inherently describes a deformation-induced anisotropy of the damage as observed in experiments. We show that the experimentally observed permanent set in stress-strain diagrams is achieved by our model in a natural way as an anisotropy effect. The performance of the model is demonstrated by means of several numerical experiments including the solution of boundary-value problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号