首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven new polynuclear copper(II) complexes of formula [Cu(mu-pymca)2] (1) (pymca(-) = pyrimidine-2-carboxylato), [Cu(mu-pymca)Br] (2), [Cu(mu-pymca)Cl] (3), [Cu(mu-pymca)(SCN)(H2O)] x 4 H2O (4), [Cu(mu-pymca)N3] (5), [Cu2(mu1,5-dca)2(pymca)2] (6) (dca = dicyanamide), and K{[mu-Au(CN)2]2[(Cu(NH3)2)2(mu-pymca)]}[Au(CN)2]2 (7) have been synthesized by reactions of K-pymca with copper(II) ions in the presence of different counteranions. Compound 1 is a linear neutral chain with a carboxylato bridging ligand in a syn-anti coordination mode, whereas complexes 2 and 3 consist of cationic linear chains with cis and trans bis(chelating) pymca bridging ligands. Complex 4 adopts a helical pymca-bridged chain structure. In complex 5, zigzag pymca-bridged chains are connected by double end-on azide bridging ligands to afford a unique honeycomb layer structure. Complex 6 is a centrosymmetric dinuclear system with double mu 1,5-dicyanamide bridging ligands and pymca end-cap ligands. Complex 7 is made of pymca-bridged dinuclear [Cu(NH3)2(mu-pymca)Cu(NH3)2](3+) units connected by [Au(CN)2](-) anions to four other dinuclear units, giving rise to cationic (4,4) rectangular nets, which are linked by aurophilic interactions to afford a singular 3D network. Variable-temperature magnetic susceptibility measurements show that complex 1 exhibits a very weak antiferromagnetic coupling through the syn-anti (equatorial-axial) carboxylate bridge (J = -0.57 cm(-1)), whereas complexes 2-4 and 7 exhibit weak to strong antiferromagnetic couplings through the bis(chelating) pymca bridging ligand J = -17.5-276.1 cm(-1)). Quantum Monte Carlo methods have been used to analyze the experimental magnetic data for 5, leading to an antiferromagnetic coupling (J = -34 cm(-1)) through the pymca ligand and to a ferromagnetic coupling (J = 71 cm(-1)) through the azide bridging ligands. Complex 6 exhibits a very weak antiferromagnetic coupling through the dicyanamide bridging ligands (J = -5.1 cm(-1)). The magnitudes of the magnetic couplings in complexes 2-5 have been explained on the basis of the overlapping between magnetic orbitals and DFT theoretical calculations.  相似文献   

2.
Reaction of the two-coordinate 'assembling complex-ligand' [Cu(tn)]2+ with the building block [Cr(CN)6]3- leads to a unique two-dimensional Cu-Cr cyano-bridged ferromagnet with unusual mu 3- and mu 4-bridging [Cu(tn)]2+ units.  相似文献   

3.
We herein present the preparation, crystal structure, magnetic properties, and theoretical study of new heterobimetallic chains of formula {[Fe(III)(bpym)(CN4)]2M(II)(H2O)2}.6H2O [bpym = 2,2'-bipyrimidine; M = Zn (2), Co (3), Cu (4), and Mn (5)] which are obtained by using the building block PPh4[Fe(bpym)(CN)4].H2O (1) (PPh4+= tetraphenylphosphonium) as a ligand toward the fully solvated MII ions. The structure of complex 1 contains mononuclear [Fe(bpym)(CN)4]- anions. Compounds 2-5 are isostructural 4,2-ribbonlike bimetallic chains where the [Fe(bpym)(CN)4]- unit acts as a bis-monodenate ligand through two of its four cyanide ligands toward the M atom. Water hexamer clusters (4) and regular alternating fused six- and four-membered water rings with two dangling water molecules (2, 3, and 5) are trapped between the cyanide-bridged 4,2-ribbonlike chains. 1 and 2 behave as magnetically isolated low-spin iron(III) centers. 3 behaves as a single-chain magnet (SCM) with intrachain ferromagnetic coupling, slow magnetic relaxation, hysteresis effects, and frequency-dependent ac signals at T < 7 K). As expected for a thermally activated process, the nucleation field (Hn) in 3 increases with decreasing T and increasing v. Below 1.0 K, Hn becomes temperature independent but remains strongly sweep rate dependent. In this temperature range, the reversal of the magnetization may be induced by a quantum nucleation of a domain wall that then propagates due to the applied field. 4 and 5 are ferro- and ferrimagnetic chains respectively, with metamagnetic-like behavior (4). DFT-type calculations and QMC methodology provided a good understanding of the magnetic properties of 3-5.  相似文献   

4.
Addition of rctt-tetrakis(2-pyridyl)cyclobutane (2,2'-tpcb) in a Cu(II)/N(3)- solution afforded the 1D coordination polymer [Cu(3)(N(3))(6)(2,2'-tpcb)(DMF)(2)](n) (1). The ligand 2,2'-tpcb serves as a tetradentate bis-chelating ligand by linking linear [(DMF)Cu(mu(1,1)-N(3))(2)Cu(N(3))(2)(mu(1,1)-N(3))(2)Cu(DMF)] trinuclear units to produce a zigzag chain. Within each centrosymmetric trinuclear unit there exist two irregularly asymmetric end-on double azido-bridged [Cu(mu(1,1)-N(3))(2)Cu](2+) cores, while one of the largest Cu-Nazide-Cu angles is observed. Magnetic susceptibility data, measured from 2 to 300 K, show bulk moderate ferromagnetic coupling within the magnetically isolated trinuclear units. These data were fitted to the appropriate equation derived from the Hamiltonian H = -J(1)(S(A1)S(B) + S(A2)S(B)) - J(2)S(A1)S(A2), giving the parameters J1 = +70(3) cm(-1), J2 = -3(2) cm(-1), g = 2.12(1), with an intertrimer interaction parameter theta = -0.74(2) K. The coupling constants were correlated with the structural parameters. Density functional calculations reproduce very well the experimental J values and show that ferromagnetism for this complex is mainly due to the topology of the magnetic orbitals and the different coordination spheres of two neighboring Cu(II) atoms, resulting in a small overlap of the orbitals possessing the unpaired electrons.  相似文献   

5.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

6.
Three Mn(III)-M(III) (M = Cr and Fe) dinuclear complexes have been obtained by assembling [Mn(III)(SB)(H(2)O)](+) and [M(III)(AA)(CN)(4)](-) ions, where SB is the dianion of the Schiff-base resulting from the condensation of 3-methoxysalicylaldehyde with ethylenediamine (3-MeOsalen(2-)) or 1,2-cyclohexanediamine (3-MeOsalcyen(2-)): [Mn(3-MeOsalen)(H(2)O)(μ-NC)Cr(bipy)(CN)(3)]·2H(2)O (1), [Mn(3-MeOsalen)(H(2)O)(μ-NC)Cr(ampy)(CN)(3)][Mn(3-MeOsalen)(H(2)O)(2)]ClO(4)·2H(2)O (2) and [Mn(3-MeOsalcyen)(H(2)O)(μ-NC)Fe(bpym)(CN)(3)]·3H(2)O (3) (bipy = 2,2'-bipyridine, ampy = 2-aminomethylpyridine and bpym = 2,2'-bipyrimidine). The [M(AA)(CN)(4)](-) unit in 1-3 acts as a monodentate ligand towards the manganese(III) ion through one of its four cyanide groups. The manganese(III) ion in 1-3 exhibits an elongated octahedral stereochemistry with the tetradentate SB building the equatorial plane and a water molecule and a cyanide-nitrogen atom filling the axial positions. Remarkably, the neutral mononuclear complex [Mn(3-MeOsalen)(H(2)O)(2)]ClO(4) co-crystallizes with the heterobimetallic unit in 2. The values of the Mn(III)-M(III) distance across the bridging cyanide are 5.228 (1), 5.505 (2) and 5.265 ? (3). The packing of the neutral heterobimetallic units in the crystal is governed by the self-complementarity of the [Mn(SB)(H(2)O)](+) moieties, which interact each other through hydrogen bonds established between the aqua ligand from one fragment with the set of phenolate- and methoxy-oxygens from the adjacent one. The magnetic properties of the three complexes have been investigated in the temperature range 1.9-300 K. Weak antiferromagnetic interactions between the Mn(III) and M(III) ions across the cyanido bridge were found: J(MnM) = -5.6 (1), -0.63 (2) and -2.4 cm(-1) (3) the Hamiltonian being defined as H = -JS(Mn)·S(M). Theoretical calculations based on density functional theory (DFT) have been used to substantiate both the nature and magnitude of the exchange interactions observed and also to analyze the dependence of the magnetic coupling on the structural parameters within the Mn(III)-N-C-M(III) motif in 1-3.  相似文献   

7.
A series of new heterometallic coordination polymers has been prepared from the reaction of metal-ligand cations and KAg(CN)(2) units. Many of these contain silver-silver (argentophilic) interactions, analogous to gold-gold interactions, which serve to increase supramolecular structural dimensionality. Compared to [Au(CN)(2)](-) analogues, these polymers display new trends specific to [Ag(CN)(2)](-), including the formation of [Ag(2)(CN)(3)](-) and the presence of Ag...N interactions. [Cu(en)(2)][Ag(2)(CN)(3)][Ag(CN)(2)] (1, en = ethylenediamine) forms 1-D chains of alternating [Ag(CN)(2)](-) and [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.102(1) A. These chains are connected into a 2-D array by strong cyano(N)-Ag interactions of 2.572(3) A. [Cu(dien)Ag(CN)(2)](2)[Ag(2)(CN)(3)][Ag(CN)(2)] (2, dien = diethylenetriamine) forms a 1-D chain of alternating [Cu(dien)](2+) and [Ag(CN)(2)](-) ions with the Cu(II) atoms connected in an apical/equatorial fashion. These chains are cross-linked by [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.1718(8) A and held weakly in a 3-D array by argentophilic interactions of 3.2889(5) A between the [Ag(CN)(2)](-) in the 2-D array and the remaining free [Ag(CN)(2)](-). [Ni(en)][Ni(CN)(4)].2.5H(2)O (4) was identified as a byproduct in the reaction to prepare the previously reported [Ni(en)(2)Ag(2)(CN)(3)][Ag(CN)(2)] (3). In [Ni(tren)Ag(CN)(2)][Ag(CN)(2)] (5, tren = tris(2-aminoethyl)amine), [Ni(tren)](2+) cations are linked in a cis fashion by [Ag(CN)(2)](-) anions to form a 1-D chain similar to the [Au(CN)(2)](-) analogue. [Cu(en)Cu(CN)(2)Ag(CN)(2)] (6) is a trimetallic polymer consisting of interpenetrating (6,3) nets stabilized by d(10)-d(10) interactions between Cu(I)-Ag(I) (3.1000(4) A). Weak antiferromagnetic coupling has been observed in 2, and a slightly stronger exchange has been observed in 6. The Ni(II) complexes, 4 and 5, display weak antiferromagnetic interactions as indicated by their relatively larger D values compared to that of 3. Magnetic measurements on isostructural [Ni(tren)M(CN)(2)][M(CN)(2)] (M = Ag, Au) show that Ag(I) is a more efficient mediator of magnetic exchange as compared to Au(I). The formation of [Ni(CN)(4)](2)(-), [Ag(2)(CN)(3)](-), and [Cu(CN)(2)](-) are all attributed to secondary reactions of the dissociation products of the labile KAg(CN)(2).  相似文献   

8.
The isomorphous coordination polymers {micro-Au(CN)(2)](2)[(M(NH(3))(2))(2)(mu-bpym)]}[Au(CN)(2)](2) (M = Co(II) (1), Ni(II) (2), Cu(II) (3)) have been prepared from the reaction of 2 equiv. M(NO(3))(2) x nH(2)O (M = Cu(II), n = 3; M = Ni(II) and Co(II), n = 6) with 1 equiv. of bipyrimidine (bpym) in aqueous ammonia and then with an aqueous solution containing 1 equiv. of K[Au(CN)(2)]. The structures of these complexes are made of bpym bridged centrosymmetric dinuclear [M(NH(3))(2)(mu-bpym)M(NH(3))(2)] units connected by [Au(CN)(2)](-) anions to four other dinuclear units giving rise to a cationic 2D (4,4) rectangular grid network, its charge being balanced by two non-coordinated [Au(CN)(2)](-). The layers are stacked in such a way that the ammonia coordinated molecules are interdigitated and aligned above and below one sheet with cavities in neighbouring sheets, giving rise to an ABAB[dot dot dot] repeat pattern of layers. Gold atoms of bridging and non-bridging dicyanoaurate anions are involved in short aurophilic interactions (Au1-Au2 distances in the range 3.12-3.14 Angstrom), leading to a chain of gold atoms running along the a direction. Neighbouring gold chains are further connected by weaker aurophilic interactions (Au1-Au1 distances in the range 3.43-3.49 Angstrom), affording a honeycomb-like 2D network of gold atoms. The (4,4) rectangular sheets and (6,3) honeycomb sheets share the Au2 atoms, leading to a unique 3D network. Magnetic measurements clearly show the existence of antiferromagnetic exchange coupling between the metal ions with susceptibility maxima at 17 K (1), 22 K (2), and 17 K (3). The data of 1 were analyzed through a full Hamiltonian involving spin-orbit coupling, axial distortion, Zeeman interactions and magnetic exchange coupling between Co(II), and the best fit gives J = -9.23 cm(-1), kappa = 0.99, lambda = -142 cm(-1), Delta = -562 cm(-1). For 2 and 3, magnetic data were fitted to the theoretical equations derived from the isotropic Hamiltonian: H = -JS(1)S(2). The best fit parameters were g = 2.050(1), J = -17.51(1) and P = 0.01(2) for 2 and g = 2.068(5), J = -20.07(8) and P = 0.015(4) for 3, respectively (P takes into account the amount of paramagnetic impurity). In order to explain the weak magnetic interaction between copper(II) ions mediated by the bipyrimidine bridging ligand in 3, we have carried out electronic structure calculations based on the density functional theory (DFT).  相似文献   

9.
Takuma M  Ohki Y  Tatsumi K 《Inorganic chemistry》2005,44(17):6034-6043
The [MoCu] carbon monoxide dehydrogenase (CODH) is a Cu-containing molybdo-flavoprotein, the active site of which contains a pterin-dithiolene cofactor bound to a sulfido-bridged dinuclear Mo-Cu complex. In this paper, the synthesis and characterization of dinuclear Mo-Cu complexes relevant to the active site of [MoCu]-CODH are described. Reaction of [MoO2S2]2- with CuCN affords the dinuclear complex [O2MoS2Cu(CN)]2- (1), in which the CN- ligand can be replaced with various aryl thiolates to give rise to a series of dinuclear complexes [O2MoS2Cu(SAr)]2- (Ar = Ph (2), o-Tol (3), and p-Tol (4)). An alternative synthesis of complex 2 is the reaction of [MoO2S2]2- with [Cu(SPh)3]2-. Similarly, [O2MoS2Cu(PPh3)]- (5), [O2MoS2Cu(dppe)]- (dppe = 1,2-bis(diphenylphosphino)ethane) (6), and [O2MoS2Cu(triphos)]- (triphos = 1,1,1-tris[(diphenylphosphino)methyl]ethane) (7) were prepared from the reactions of [MoO2S2]2- with the Cu(I) phosphine complexes. Treatment of 1, 2, 4, or 5 with dithiols (1,2-(SH)2C6H4, 1,2-(SH)2C6H2-3,6-Cl2, and 1,2-(SH)2C2H4), in acetonitrile, leads to the replacement of a molybdenum-bound oxo ligand to yield [(dithiolate)Mo(O)S2CuL]2- (L = CN, SAr; dithiolate = 1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, or 1,2-S2C2H4) (8-13) or [(1,2-S2C6H4)Mo(O)S2Cu(PPh3)]- (14) complexes.  相似文献   

10.
Two bimetallic assemblies, [Ni(tn)(2)](2)[Cr(CN)(5)(NO)]OH.H(2)O (1) and [Ni(tn)(2)](2)[Co(CN)(6)]NO(3).2H(2)O (2) (tn = 1,3-diaminopropane), have been prepared and structurally and magnetically characterized. Crystal data for 1 (2): space group P1 (P1), a = 8.698(3) (8.937(2)) A, b = 10.001(2) (9.863(1)) A, c = 10.158(2) (10.064(1)) A, alpha = 87.40(2) (86.064(10)) degrees, beta = 65.10(2) (65.489(10)) degrees, gamma = 81.63(2) (81.572(12)) degrees and Z = 1 (1). Both structures consist of two-dimensional grid-like polycations containing Ni-N triple bond C-M linkages (M = Cr or Co) and counteranions (OH, NO(3)). Magnetic studies of 1 showed that the complex displays a metamagnetic behavior originating from intralayer ferromagnetic and interlayer antiferromagnetic interactions. Long-range antiferromagnetic ordering was observed at T(N) = 3.3 K. Complex 2 exhibits intramolecular ferromagnetic interactions through the diamagnetic N triple bond C-Co-N triple bond C bridges, owing to superexchange involving the empty d(sigma) orbital of the diamagnetic Co(III) ion.  相似文献   

11.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

12.
Three isostructural Cu 2Ln 2 1-D polymers [Cu 2Ln 2L 10(H 2O) 4.3H 2O] n where Ln = Gd ( 1), Er ( 2), and Y ( 3) and HL= trans-2-butenoic acid, were synthesized and characterized by X-ray crystallography, electron paramagnetic resonance, and magnetic measurements. Pairs of alternate Cu 2 and Ln 2 dinuclear units are combined into a linear array by a set of one covalent eta (2):eta (1):mu 2 carboxylate oxygen and two H bonds, at Cu...Ln distances of ca. 4.5 A. These units exhibit four eta (1):eta (1):mu 2 and two eta (2):eta (1):mu 2 carboxylate bridges, respectively. Magnetic measurements between 2 and 300 K, fields B 0 = mu 0 H between 0 and 9 T, and electron paramagnetic resonance (EPR) measurements at the X-band and room temperature are reported. The magnetic susceptibilities indicate bulk antiferromagnetic behavior of the three compounds at low temperatures. Magnetization and EPR data for 1 and 3 allowed evaluation of the exchange couplings between both Cu and Gd ions in their dinuclear units and between Cu and Gd neighbor ions in the spin chains. The data for the isolated Cu 2 units in 3 yield g || = 2.350 and g [symbol: see text] = 2.054, J Cu-Cu = -338 (3) cm (-1) for the exchange coupling [ H ex(1,2) = - J 1-2 S1 x S2], and D 0 = -0.342 (0.003) cm (-1) and E 0 = 0.003 (0.001) cm (-1) for the zero-field-splitting parameters of the triplet state arising from anisotropic spin-spin interactions. Considering tetranuclear blocks Gd-Cu-Cu-Gd in 1, with the parameters for the Cu 2 unit obtained for 3, we evaluated ferromagnetic interactions between Cu and Gd neighbors, J Cu-Gd = 13.0 (0.1) cm (-1), and between Gd ions in the Gd 2 units, J Gd-Gd = 0.25 (0.02) cm (-1), with g Gd = 1.991. The bulk antiferromagnetic behavior of 1 is a consequence of the antiferromagnetic coupling between Cu ions and of the magnitude, |J Cu-Gd|, of the Cu-Gd exchange coupling. Compound 2 displays a susceptibility peak at 15 K that may be interpreted as the combined result from antiferromagnetic couplings between Er (III) ions in Er 2 units and their coupling with the Cu 2 units.  相似文献   

13.
The reactions of a Cu(II) salt, MoO(3), and the appropriate bipyridine ligand yield a series of bimetallic oxides, [Cu(3,4'-bpy)MoO(4)] (1), [Cu(3,3'-bpy)(0.5)MoO(4)] (2), and [Cu(4,4'-bpy)(0.5)MoO(4)].1.5H(2)O (3.1.5H(2)O). The structures of 1-3 exhibit three-dimensional covalent frameworks, constructed from bimetallic oxide layers tethered by the dipodal organoimine ligands. However, the [CuMoO(4)] networks are quite distinct. For structure 1, the layer consists of corner-sharing [MoO(4)] tetrehedra and [CuN(2)O(3)] square pyramids, while the layer of 2 is constructed from [MoO(4)] tetrehedra and binuclear [Cu(2)O(6)N(2)] units of edge-sharing copper square pyramids. The oxide substructure of 3 consists of [MoO(4)] tetrahedra corner-sharing with tetranuclear clusters of edge-sharing [CuO(5)N] octahedra. Crystal data: C(10)H(8)N(2)O(4)CuMo (1), orthorhombic Pbca, a = 12.4823(6) A, b = 9.1699(4) A, c = 19.5647(9) A, V = 2239.4(1) A(3), Z = 8; C(5)H(4)NO(4)CuMo (2), triclinic P, a = 5.439(1) A, b = 6.814(1) A, c = 10.727(2) A, alpha = 73.909(4)(o), beta = 78.839(4)(o); gamma = 70.389(4)(o); V = 357.6(1) A(3), Z = 2; C(10)H(8)N(2)O(8)Cu(2)Mo(2).3H(2)O 3.1.5H(2)O, triclinic P, a = 7.4273(7) A, b = 9.2314(8) A, c = 13.880(1) A, alpha = 71.411(2)(o), beta = 88.528(2)(o), gamma = 73.650(2)(o), V = 863.4(1) A(3), Z = 2. The magnetic properties of 1-3 arise solely from the presence of the Cu(II) sites, but reflect the structural differences within the bimetallic oxide layers. Compound 1 exhibits magnetic behavior consistent with ferromagnetic chains which couple antiferromagnetically at low temperature. Compound 2 exhibits strong antiferromagnetic dimeric interactions, with the magnetic susceptibility data consistent with the Bleaney-Bowers equation. Similarly, the magnetic susceptibility of 3 is dominated by antiferromagnetic interactions, which may be modeled as a linear S = 1/2 Heisenberg tetramer.  相似文献   

14.
Octahedral coordination of molybdenum(III) is achieved by limiting the amount of cyanide available upon complex formation. Reaction of Mo(CF(3)SO(3))(3) with LiCN in DMF affords Li(3)[Mo(CN)(6)] x 6DMF (1), featuring the previously unknown octahedral complex [Mo(CN)(6)](3-). The complex exhibits a room-temperature moment of mu(eff) = 3.80 mu(B), and assignment of its absorption bands leads to the ligand field parameters Delta(o) = 24800 cm(-1) and B = 247 cm(-1). Further restricting the available cyanide in a reaction between Mo(CF(3)SO(3))(3) and (Et(4)N)CN in DMF, followed by recrystallization from DMF/MeOH, yields (Et(4)N)(5)[Mo(2)(CN)(11)] x 2DMF x 2MeOH (2). The dinuclear [Mo(2)(CN)(11)](5-) complex featured therein contains two octahedrally coordinated Mo(III) centers spanned by a bridging cyanide ligand. A fit to the magnetic susceptibility data for 2, gives J = -113 cm(-1) and g = 2.33, representing the strongest antiferromagnetic coupling yet observed through a cyanide bridge. Efforts to incorporate these new complexes in magnetic Prussian blue-type solids are ongoing.  相似文献   

15.
Three new mixed-ligand cobalt(II) complexes of formula [Co2(H2O)6(bta)(bpym)]n.4nH2O (1), [Co2(H2O)2(bta)(bpym)]n (2), and [Co2(H2O)4(bta)(bpym)]n.2nH2O ( 3) (bpym = 2,2'-bipyrimidine and H 4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized by single crystal X-ray diffraction. 1 is a chain compound of mer-triaquacobalt(II) units which are linked through regular alternating bis-bidentate bpym and bis-monodentate bta groups. 2 and 3 are three-dimensional compounds where aquacobalt(II) ( 2) and cis-diaquacobalt(II) ( 3) entities are linked by bis-bidentate bpym ( 2 and 3) and tetrakis- ( 2 and 3) and octakis-monodentate ( 2) bta ligands. The cobalt atoms in 1- 3 exhibit somewhat distorted octahedral surroundings. Two bpym-nitrogen atoms ( 1- 3) and either two bta-oxygens ( 2) or one bta-oxygen and a water molecule ( 1 and 3) build the equatorial plane, whereas the axial positions are filled either by two water molecules ( 1) or by a bta-oxygen atom and a water molecule ( 2 and 3). The values of the cobalt-cobalt separation across the bridging bpym vary in the range 5.684(2)-5.7752(7) A, whereas those through the bta bridge cover the ranges 5.288(2)-5.7503(5) A (across the anti-syn carboxylate) and 7.715(3)-11.387(1) A (across the phenyl ring). The magnetic properties of 1- 3 have been investigated in the temperature range 1.9-290 K. They are all typical of an overall antiferromagnetic coupling with the maxima of the magnetic susceptibility at 14.5 ( 1) and 11.5 K ( 2 and 3). Although exchange pathways through bis-bidentate bpym and carboxylate-bta in different coordination modes are involved in 1- 3, their magnetic behavior is practically governed by that across the bpym bridge, the magnitude of the exchange coupling being J = -5.59(2) ( 1), -4.41(2) ( 2), and -4.49(2) ( 3) with the Hamiltonian H = - JS 1 S 2.  相似文献   

16.
Reaction of the cyanoruthenate anions [Ru(bpym)(CN)4]2- and [[Ru(CN)4]2(mu-bpym)]4- (bpym = 2,2'-bipyrimidine) with lanthanide(III) salts resulted in the crystallization of coordination networks based on Ru-CN-Ln bridges. Four types of structure were obtained: [Ru(bpym)(CN)4][Ln(NO3)(H2O)5] (Ru-Ln; Ln = Sm, Nd, and Gd) are one-dimensional helical chains; [Ru(bpym)(CN)4]2[Ln(NO3)(H2O)2][Ln(NO3)(0.5)(H2O)(5.5)](NO3)(0.5).5.5H2O (Ru-Ln; Ln = Er and Yb) are two-dimensional sheets containing cross-linked chains based on Ru2Ln2(mu-CN)4 diamond units, which are linked into one-dimensional chains via shared Ru atoms; [[Ru(CN)4]2(mu-bpym)][Ln(NO3)(H2O)5]2.3H2O (Ru2-Ln; Ln = Nd and Sm) are one-dimensional ladders with parallel Ln-NC-Ru-CN-Ln-NC strands connected by the bipyrimidine "cross pieces" acting as rungs on the ladder; and [[Ru(CN)4]2(mu-bpym)][Ln(H2O)6](0.5)[Ln(H2O)4](NO3)(0.5).nH2O (Ru2-Ln; Ln = Eu, Gd, and Yb; n = 8.5, 8.5, and 8, respectively) are three-dimensional networks in which two-dimensional sheets of Ru2Ln2(mu-CN)4 diamonds are connected via cyanide bridges to Ln(III) ions between the layers. Whereas Ru-Gd shows weak triplet metal-to-ligand charge-transfer (3MLCT) luminescence in the solid state from the Ru-bipyrimidine chromophore, in Ru-Nd, Ru-Er, and Ru-Yb, the Ru-based emission is quenched, and all of these show, instead, sensitized lanthanide-based near-IR luminescence following a Ru --> Ln energy transfer. Similarly, Ru2-Nd and Ru2-Yb show lanthanide-based near-IR emission following excitation of the Ru-bipyrimidine chromophore. Time-resolved luminescence measurements suggest that the Ru --> Ln energy-transfer rate is faster (when Ln = Yb and Er) than in related complexes based on the [Ru(bipy)(CN)4]2- chromophore, because the lower energy of the Ru-bpym 3MLCT provides better spectroscopic overlap with the low-energy f-f states of Yb(III) and Er(III). In every case, the lanthanide-based luminescence is relatively short-lived as a result of the CN oscillations in the lattice.  相似文献   

17.
The reaction of the complex [Au2Ag2(C6F5)4)N[triple bond]CCH3)2]n (1) with 1 equiv of CuCl in the presence of 1 equiv of pyrimidine ligand leads to the formation of the heteronuclear Au(I)-Cu(I) organometallic polymer [Cu{Au(C6F5)2}(N[triple bond]CCH3)(mu2-C4H4N2)]n (2) through a transmetalation reaction. Complex 2 displays unprecedented unsupported Au(I)...Cu(I) interactions of [Au(C6F5)2]- units with the acid Cu(I) sites in a [Cu(N[triple bond]CCH3)(mu2-pyrimidine)]n+(n) polymeric chain. Complex 2 has a rich photophysics in solution and in the solid state.  相似文献   

18.
Reaction of NaN(3) with the [Cu(II)(tn)](2+) ion (tn = 1,3-diaminopropane) in basic aqueous solution yields the azido-bridged complex of formula [Cu(2)(tn)(2)(N(3))(4)] (1), which is characterized by X-ray crystallography. The structure of 1 is made up of dinuclear neutral complexes, of formula [Cu(2)(tn)(2)(N(3))(4)], resulting from the assembling of two mononuclear units through two equivalent end-on azide bridges connecting asymmetrically two Cu(tn)(N(3))(2) entities. These dinuclear units are connected through two asymmetric end-to-end N(3) bridges to form a chain of dimers. Magnetic measurements for compound 1 show weak antiferromagnetic exchange interactions between the Cu(II) ions. The magnetic data were modeled using the susceptibility expression derived for an alternating AF S = 1/2 chain. A very satisfactory fit over the whole temperature range was obtained with g = 2.1438(4), J(1) = -3.71(2) cm(-1), and J(2) = -3.10(2) cm(-1) (J(1) and J(2) are the singlet-triplet separations). This magnetic behavior differs from those observed for similar examples which were reported as having alternating ferro- and antiferromagnetic exchange interactions; thus, DFT calculations were done to understand the nature of the magnetic coupling in such asymmetric end-on and end-to-end N(3) bridges. Theoretical results show that the double asymmetric end-on bridges produce antiferromagnetic coupling while the end-to-end ones can present ferro- or antiferromagnetic coupling depending on the copper coordination sphere.  相似文献   

19.
A new tridentate Schiff base ligand HL (L = C14H19N2O), derived from the condensation of benzoylacetone and 2-dimethylaminoethylamine in a 1:1 ratio, reacts with copper(ii) acetate and cyanate, thiocyanate or azide, to give rise to several end-to-end polymeric complexes of formulae [CuL(mu(1,3)-NCO)]n 1, [CuL(mu(1,3)-NCS)]n 2 and the complex 3 has two crystallographically independent units of formula [CuL(N3)] in the asymmetric unit cell. Complex 3 exists in dimeric form rather than as a polymeric chain. Compound 1 is the first report of a singly end-to-end cyanate bridged polymeric chain of Cu(II) with a Schiff base as a co-ligand. There are many examples of double NCS bridged polymeric chains, but fewer singly bridged ones such as compound 2. We have characterized these complexes by analytical, spectroscopic, structural and variable temperature magnetic susceptibility measurements. The coordination geometry around the Cu(II) centers is distorted square pyramidal for 1 and 2 and square planar for complex 3. The magnetic susceptibility data show slight antiferromagnetic coupling for the polymers having J values -0.19 and -0.57 cm(-1) for complexes 1 and 2 respectively. The low values of J are consistent with the equatorial-axial disposition of the bridges in the polymers.  相似文献   

20.
Three copper(II)-rhenium(IV) bimetallic complexes of formula [ReCl(4)(mu-ox)Cu(phen)(2)] (1), [ReCl(4)(mu-ox)Cu(phen)(2)].CH(3)CN (2), and [ReCl(4)(mu-ox)Cu(terpy) (H(2)O)][ReCl(4)(mu-ox)Cu(terpy)(CH(3)CN)] (3) (ox = oxalate anion, phen = 1,10-phenanthroline, and terpy = 2,2':6,2"- terpyridine) have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. Complex 1 crystallizes in the triclinic system, space group P(-1), with a = 9.776(2), b = 11.744(3), c = 14.183(3) A, alpha =102.09(2) degrees, beta = 109.42(2) degrees, gamma = 107.11(2) degrees, and Z = 2, whereas 2 and 3 crystallize in the monoclinic system, space groups P2(1)/n and P2(1)/c, respectively, with a = 12.837(3), b = 17.761(4), c = 12.914(3) A, beta = 91.32(2) degrees, and Z = 4 for 2, and a = 8.930(2), b = 18.543(4), c = 27.503(6) A, beta = 94.67(2) degrees, and Z = 4 for 3. The structures of 1 and 2 are made up of neutral [ReCl(4)(mu-ox)Cu(phen)(2)] bimetallic units. Re(IV) and Cu(II) metal ions exhibit distorted octahedral coordination geometries, being bridged by a bis(bidentate) oxalato ligand. The presence of acetonitrile molecules of crystallization in 2 causes a somewhat greater separation between the bimetallic complexes and a different packing of these units in the crystal structure with respect to 1. The copper-rhenium separation across oxalato is 5.628(2) in 1 and 5.649(3) A in 2. The structure of 3 is made up of two different and neutral bimetallic units, [ReCl(4)(mu-ox)Cu(terpy)(H(2)O)] and [ReCl(4)(mu-ox)Cu(terpy)(CH(3)CN)]. In the first one, the oxalate group behaves as a bis(bidentate) ligand occupying one equatorial and one axial position in the elongated octahedral environment of Cu(II). The water molecule is axially coordinated. In the second one, the oxalate group behaves as a bidentate/monodentate ligand occupying the axial position in the square pyramidal environment of Cu(II). The acetonitrile molecule occupies a basal coordination position around the copper atom. These units are arranged in such a way that a chlorine atom of the first unit (Cl(1)) points toward the copper atom (Cu(2))of the second one (3.077(2) A for Cl(1)(.)Cu(2)), forming a tetranuclear species. The copper-rhenium separation across bis(didentate) oxalato is 5.504(3) A, whereas that through bidentate/monodentate oxalato is 5.436(2) A. The magnetic behavior of 2 and 3 has been investigated over the temperature range 1.8-300 K. A very weak and nearly identical antiferromagnetic coupling between Re(IV) and Cu(II) through bis(bidentate) oxalato occurs in 2 (J = -0.90 cm(-1)) and 3 (J = -0.83 cm(-1)); it is ferromagnetic in 3 through both the bidentate-monodentate oxalato (J = +5.60 cm(-1)) and the chloro (J = +0.70 cm(-1)) bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号