首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
Local environments and dynamics of lithium ions in the binary lithium silicide Li13Si4 have been studied by 6Li MAS-NMR, 7Li spin-lattice relaxation time and site-resolved 7Li 2D exchange NMR measurements as a function of mixing time. Variable temperature experiments result in distinct differences in activation energies characterizing the transfer rates between the different lithium sites. Based on this information, a comprehensive picture of the preferred ionic transfer pathways in this silicide has been developed. With respect to local mobility, the results of the present study suggests the ordering Li6/Li7>Li5>Li1>Li4 >Li2/Li3. Mobility within the z=0.5 plane is distinctly higher than within the z=0 plane, and the ionic transfer between the planes is most facile via Li1/Li5 exchange. The lithium ionic mobility can be rationalized on the basis of the type of the coordinating silicide anions and the lithium-lithium distances within the structure. Lithium ions strongly interacting with the isolated Si4− anions have distinctly lower mobility than those the coordination of which is dominated by Si26− dumbbells.  相似文献   

2.
In anticipation of using fluctuations in the nuclear dipolar and quadrupolar interaction as a probe of lithium ion motion in lithium borate glasses, the static values of these interactions were measured using a variety of echo techniques. The static quadrupolar echo spectrum of 7Li and a calculation of the dipolar interaction in crystalline Li2B4O7 (same chemical composition as the glass under study) were used to estimate the strength of the two interactions. These indicate that the dipolar and quadrupolar interactions for 6Li will be of similar size and the dipolar interaction will be dominated by the unlike spin interaction between the 6Li and the 10B, 11B spins. An appropriate theoretical model is proposed and explicit expressions for the echo amplitude are calculated in terms of the dipolar and quadrupolar second moments. This single spin model takes into account the quadrupolar interaction but treats the dipolar interaction as an effective magnetic field. Experimental results are presented which show the essential validity of the model and measurements lead to reasonable values for the dipolar and quadrupolar second moments. The relative merits of the various echo techniques are discussed.  相似文献   

3.
In anticipation of using fluctuations in the nuclear dipolar and quadrupolar interaction as a probe of lithium ion motion in lithium borate glasses, the static values of these interactions were measured using a variety of echo techniques. The static quadrupolar echo spectrum of 7Li and a calculation of the dipolar interaction in crystalline Li2B4O7 (same chemical composition as the glass under study) were used to estimate the strength of the two interactions. These indicate that the dipolar and quadrupolar interactions for 6Li will be of similar size and the dipolar interaction will be dominated by the unlike spin interaction between the 6Li and the 10B, 11B spins. An appropriate theoretical model is proposed and explicit expressions for the echo amplitude are calculated in terms of the dipolar and quadrupolar second moments. This single spin model takes into account the quadrupolar interaction but treats the dipolar interaction as an effective magnetic field. Experimental results are presented which show the essential validity of the model and measurements lead to reasonable values for the dipolar and quadrupolar second moments. The relative merits of the various echo techniques are discussed.  相似文献   

4.
Electrical conductivity and nuclear magnetic relaxation rates were measured with pure and doped LiBr between 400 K and the melting point (824 K). Prevalent intrinsinc disorder was observed down to 470 K. The degree of thermal disorder is 5.10−7 at 470 K and 5.10−3 at the melting point. From the relaxation rates of 7Li, which are caused by Li-diffusion and nuclear dipole interaction, mean jump frequencies of the cations are derived. Conductivities calculated from these frequencies for a jump process via neighbouing cation vacancies are in perfect agreement with directly measured conductivities. From relaxation rates of 81Br with MgBr2-doped crystals jump frequencies of vacancies were obtained which are again in good agreement with those derived from the conductivity data. The energies resulting from the measurements are (0.43 ± 0.03) eV for migration of cation vacancies and (1.46 ± 0.05) eV for thermal disorder. From motional narrowing of the 81Br absorption line the jump frequency of the anions is obtained, which is much smaller than for the cations. Since this motional narrowing is not influenced by any doping, it is concluded that anion transport mainly occurs via pairs of cation and anion vacancies.  相似文献   

5.
31P NMR measurements on CoADP bound to creatine kinase designed to estimate the relative contribution of scalar and dipolar interactions to31P spin relaxation rates show that these rates are primarily due to distance-dependent dipolar interactions and that the contribution of the scalar interaction is negligible.  相似文献   

6.
Parameters of paramagnetic relaxation were determined by OD ESR and quantum beats techniques for a recombining pair of radical ions (DPS-d10)+/(PTP-d14)? inn-hexane, isooctane,cis-decalin, and squalane solutions. TheT 2 relaxation time determined by quantum beats technique is independent of solvent viscosity and magnetic field strength in the range 170–9600 G. These data are in agreement with the results obtained by OD ESR technique assuming fastT 1 relaxation for radical cation. Neglecting the contribution of radical anion relaxation, we obtainedT 1c=T 2c?50 ns for (DPS-d10)+.  相似文献   

7.
The interaction of three common herbicides, paraquat, acifluorfen and alachlor, with spinach chloroplast photosystem II (PS II) was investigated by measuring1H nuclear magnetic resonance spin-lattice relaxation rates, transient nuclear Overhauser effect (NOE) and NOE spectroscopy (NOESY) spectra. Binding to PS II was detected by (i) the enhancement of single-selective relaxation rates and (ii) the decrease in the optimal mixing time providing maximal cross-peak intensity in NOESY spectra. Titration of relaxation enhancements was used to calculate the dissociation constants (K d) from the bound state for paraquat (K d = 292 ± 71 μM−1) and acifluorfen (K d = 311 ± 58 μM−1). A similarK d was apparent for alachlor. Double-selective relaxation rates allowed the isolation of dipolar relaxation terms between selected proton pairs wherefrom dynamic features of the bound state were evaluated. In all cases the motional correlation time of bound herbicide (τc = 0.1−0.4 ns at 300 K) was found two orders of magnitude slower than in the free-solution state. In the case of alachlor the E and Z isomers were observed to bind differently to PS II and a change in conformation could be hypothesized.  相似文献   

8.
《Solid State Ionics》2006,177(17-18):1405-1411
Two model compounds, lithium imidazolium (LiIm) and lithium 2-undecylimidazolium (und-LiIm), were synthesized. These materials are chosen as models of potential lithium ion conductors for use as electrolytes in lithium batteries. Solid-state NMR was used to provide information on the microscopic interactions including ionic mobility and ring reorientations which govern the efficiency of conductivity. Lithium imidazolium was mixed with lithium methylsulfonate, generating a doped complex in which a doubly lithiated imidazole ring was inferred based on the 7Li NMR chemical shifts. Our research includes 6,7Li variable temperature MAS NMR experiments at intermediate spinning speeds, relaxation studies to determine spin-lattice relaxation times (T1) of lithium ion hopping, and 2D exchange spectroscopy to determine possible chemical exchange processes. The possibility of 2-site ring reorientation for the doubly lithiated imidazole ring was supported by exchange spectroscopy. Comparisons of spin-lattice relaxation times and corresponding activation energies of the lithium imidazolium and the doped complex point to a higher degree of mobility in the latter.Lithium 2-undecylimidazolium was prepared and exhibited a lower melting point than the parent lithium imidazolium, as expected. This small molecule was chosen as representative of a side-chain functionalized polyethylene-based material. 7Li MAS spectra show mainly the presence of the doubly lithiated imidazole ring in pure und-LiIm, and in the LiCH3SO3–und-LiIm mixture. The data clearly indicate local mobility of the lithium ions in the materials.  相似文献   

9.
The Raman spectra of (1 − x)(BMITFSI), xLiTFSI ionic liquids, where 1‐butyl‐3‐methylimidazolium cation (BMI+) and bis(trifluoromethane‐sulfonyl)imide anion (TFSI) are analyzed for LiTFSI mole fractions x < 0.4. As expected from previous studies on similar TFSI‐based systems, most lithium ions are shown to be coordinated within [Li(TFSI)2] anionic clusters. The variation of the self‐diffusion coefficients of the 1H, 19F, and 7Li nuclei, measured by pulsed‐gradient spin‐echo NMR (PGSE‐NMR) as a function of x, can be rationalized in terms of the weighted contribution of BMI+ cations, TFSI ‘free’ anions, and [Li(TFSI)2] anionic clusters. This implies a negative transference number for lithium. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A method is proposed for the calculation of heteronuclear dipolar coupling between two 1/2 nuclei, X and Y, by measuring the spin-lattice relaxation rates of the abundant Y nucleus and of the satellite peaks (1H, 31P, 19F) due to the scalar coupling of Y with the less abundant X nucleus. The 1H-13C dipolar interaction has been evaluated from the proton spin-lattice relaxation rates of tyrosine in water solution and the effective correlation times of the aromatic moiety have been calculated.  相似文献   

11.
The NMR spin-lattice relaxation time, TI, has been measured as a function of temperature for both 7Li and 27Al in pure and doped β-LiAl alloys. Compositions with 7Li concentration in the range 48.3–54.5% and doping in the form Li50Al50?xMx, where M = Ag or In, were studied. The relaxation rates T1?1 for the 27Li and the 27Al resonances were found to be peaked functions of temperature with the maxima for 7Li appearing at composition dependent temperatures. The 27Al maxima always appeared at a lower temperature, independent of composition, and the 27Al maximum relaxation rate was a strong function of composition in contrast with 7Li where the maximum rate was only weakly dependent on composition. The principle relaxation mechanisms are identified as dipole-dipole coupling in the 7Li and coupling of the 27Al quadrupole moment to electric field gradients. The temperature dependence of these rates is attributed to the thermally activated diffusion of vacancies of a non-thermal origin in the Li sub-lattice. These vacancies are also responsible for the fluctuating electric field gradients. The results have been analyzed to give the Li diffusion coefficients with associated activation energies and estimates of the vacancy concentration as functions of alloy composition.  相似文献   

12.
We have performed 7Li and 19F nuclear magnetic resonance (NMR) in two lithium fluorides BaLiF3 and YLiF4 to explore the possibility of a crystal NMR quantum computing device. We find that (1) both the absolute values and the angular dependences of the line widths can primarily be accounted for by the nuclear dipolar fields, and (2) the spin–lattice relaxation times are long enough for quantum computations. These characteristics indicate that these crystals can be possible candidates for quantum computing devices. We also find that, in the perovskite structures like BaLiF3, magic angles are quite effective to diminish the nuclear dipole fields, which enables us to treat some nuclei as ‘isolated’. We propose using this feature to create low-dimensional nuclear-spin networks in the crystals. Received: 29 January 2001 / Accepted: 6 February 2001 / Published online: 3 April 2001  相似文献   

13.
The proton spin-lattice relaxation time has been measured at 20·8 Mc/s for a series of solutions of water in heavy water and solutions of ammonia in heavy ammonia for the temperature range from the melting point to the liquid-vapour critical temperature. Measurements have also been made for water over limited temperature ranges at several fixed densities.

The contributions to the spin-lattice relaxation time from direct dipolar and spin-rotation interactions have been separated. The spin-rotation interaction contribution appears to be the same for H2O as for HDO and also as between NH3, NH2D and NHD2 and this result is justified. The correlation times for molecular re-orientation, τd, and for molecular angular velocity, τsr, are derived from the results and in so doing some support for the Hubbard [12] relation betweent τsr and τd is adduced. It is found that at the critical temperature τsrd which contrasts with other liquids for which it is usually found that τsr??τd. The spin-rotation interaction constants in the water and ammonia molecules are found to be approximately 120 kc/s and 80 kc/s, respectively.

An attempt to separate the inter- and intra-molecular contributions to the dipolar spin-lattice relaxation time is possible in principle, in spite of the rapid proton exchange, but is frustrated by the fact that the equilibrium constants are little different from their statistical values. Nevertheless there is evidence that the two interactions vary in much the same way with temperature.

The correlation times deduced from the dipolar relaxation time show close relationship with dielectric, self diffusion and deuteron relaxation time data.

It is suggested that the re-orientation of both water and ammonia molecules may be by a small angle Brownian diffusion even near the critical temperature.  相似文献   

14.
In a preliminary report, we have demonstrated transfer of a flowing bolus enhanced in low magnetic fields (e.g., 0.33 T) with dynamic nuclear polarization (DNP), but monitored in a high magnetic field (4.7 T). The advantages of the high magnetic field monitoring approach include: 1) greater chemical shift dispersion, and 2) improved signal strength in comparison with static low field DNP experiments. In the present study, a model is developed to predict ultimate DNP enhancements (A) in this experiment for flow liquid/liquid intermolecular transfer (L2IT). L2IT1H and13C data is obtained for benzene and chloroform in order to test the validity of the model. The ultimate1H and13C DNP enhancements obtained for benzene/TEMPO are ?150 and ?220, respectively. For a chloroform/TEMPO (L2IT) sample, the ultimate enhancements are close to the1H dipolar (?330) and the13C scalar (+2660) limit, respectively. In the latter case, the observed13C DNP enhancement exceeds the thermal Boltzmann magnetization at 4.7 T by a factor of 21. For a 1-chlorobutane/TEMPO sample selective enhancements were observed at different sites in the molecule. For example, the C-1 carbon exhibits a large scalar enhancement, whereas, the other carbons exhibit dipolar enhancements. Data illustrating the importance of three-spin effects in13C DNP studies is also presented. Alternative methods of sample transfer from the low to high magnetic field are also discussed.  相似文献   

15.
The observed anomalous decrease in the proton spin-lattice relaxation timeT 1 on approaching the Curie point in a rather pure KH2PO4 single crystal is explained by magnetic dipolar coupling to the ferroelectric mode. The isolated “non-interacting” O?H...O proton flipping time is estimated from theT 1 data as τ=0.66·10?12 sec for the paraelectric phase and τ=2.24·10?12 sec for the ferroelectric phase, in good agreement with the results obtained from other methods.  相似文献   

16.
The interaction between Li salts {LiTf (Tf = CF3SO3) and LiNTf2 (NTf2 = N(SO2CF3)2)} with surface modified alumina particles (basic, neutral or acidic) is investigated employing a range of advanced solid state NMR methodologies. Utilizing 7Li MAS NMR, a new signal – in addition to the signal of the pure salt – could be identified in the composite samples, increasing with increasing basicity of the alumina surface. Employing 7Li–{1H} CPMAS NMR and 7Li–{1H}–CPMAS–{27Al} REAPDOR NMR spectroscopy, this new signal could be unequivocally assigned to an alumina-surface bound Li species. For the anions, 19F MAS NMR spectra clearly prove the existence of new anion sites. Employing 19F–{7Li} REDOR spectroscopy and 19F–{27Al} TRAPDOR NMR spectroscopy, the identified signals could be safely assigned to anions within the pristine Li salt and anions attached to the alumina surface. These results present direct evidence for the anion???alumina surface and cation???alumina surface interaction, suggested by several authors to aid in the interpretation of the effect of the ceramic additive on the ionic conductivity.  相似文献   

17.
In this study,1H and13C dynamic nuclear polarization (DNP) was generated at a magnetic field strength of 0.33 T utilizing silica phase immobilized nitroxide (SPIN) samples. The polarization was subsequently transferred to flowing liquids and monitored at a magnetic field strength of 4.7 T. These solid/liquid intermolecular transfer (SLIT) experiments provide efficient polarization transfer without the necessity of the free radical system present in the monitoring fluid. Specifically, ultimate1H SLIT DNP Overhauser enhancements of ?56 and ?110 have been observed for benzene and chloroform in the presence of SPIN system 2, respectively. The13C SLIT DNP enhancement for benzene is dominated by three-spin effects and poor leakage factors (f c). However, a particularly favorable case is the chloroform/SPIN 2 system which exhibits a scalar dominated enhancement. For this case, positive enhancements 40–60 times the13C thermal Boltzmann magnetization at 4.7 T have been observed. The large scalar dominated13C DNP enhancement for this system represents one of the largest experimental enhancements reported to date. The13C DNP spectra for other samples which exhibit favorable scalar13C dominated enhancements (e.g., Freon 113) are also presented. Three different SPIN systems were also prepared and characterized in the present study.  相似文献   

18.
An experimental NMR study of the 6Li isotope in single crystals of lithium niobate has been performed, along with a computer simulation of 6Li NMR spectra for a crystal of congruent composition, containing defects in the cation sublattice. It is found that the mean value of the principal component of the electric field gradient tensor at the 6Li nuclei is 1.48 times larger than at the 7Li nuclei. It is surmised that there is a substantial difference in the character of the mobility of the 6Li and 7Li nuclei in the LiO6 octahedra at room temperature. Fiz. Tverd. Tela (St. Petersburg) 40, 122–125 (January 1998)  相似文献   

19.
The nuclear spin lattice relaxation timeT 1 of the23Na,85Rb,87Rb,133Cs,14N nuclei is measured in NaCN, RbCN and CsCN as a function of temperature below and above the ferroelastic phase transition temperatureT c. BelowT c the behaviour ofT 1 of the alkali nuclei renders possible to determine the flip frequency of the CN molecules and its temperature dependence. AboveT c from the14NT 1 the correlation time τc of the rotational motions of the CN molecules and its temperature dependence is determined. An empirical rule is verified demonstrating that atT c the correlation times take nearly the same values for all cyanides. For the high and low temperature phases one obtains atT c about τc=5·10?13s and τc=5·10?11s, respectively. The results are discussed with respect to the mechanism of the phase transition.  相似文献   

20.
Si dangling bond centers in aerosol particles of amorphous hydrogenated silicon formed by thermal decomposition of SiH4 in Ar were studied by pulsed electron paramagnetic resonance. The hole-burning and inversion-recovery experiments demonstrate that large-scale rapid spectral diffusion takes place in the samples with high spin concentration. Correlation times τc of the spectral diffusion and spin-lattice relaxation timesT 1 were obtained in the temperature range between 77 and 290 K. Above 130 K, τc andT 1 are proportional one to the other. The unusual feature of this spectral diffusion is that the shape of the central part of the spectral hole does not change when the delay time increases. The other paramagnetic centers previously investigated showed a remarkable change of the hole shape which was induced by modulation of dipolar interaction due to spin flips. It is suggested that the observed anomaly in the Si dangling bond centers arises due to cooperative spin flips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号