首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Flow chambers applied to the study of the initial adhesion process of Candida parapsilosis are rarely found in the literature. The ability of these microorganisms to proliferate and form biofilms in environments at temperatures around 22 or 37 degrees C is reflected in the contamination of laboratory instruments and material or in human implant infections, respectively. The initial interaction between yeasts and substrata is mediated by physicochemical forces, which in turn originate from the physicochemical surface properties of both interacting phases. In this context, this work aims to relate the initial rates of adhesion rates to glass and silicone of Candida parapsilosis, strains 294 and 289, grown at 22 and 37 degrees C with the theoretical predictions of the adhesion process, expressed by the interaction free energies and calculated through the physicochemical parameters, which are also measured at 22 and 37 degrees C. The results indicate that physicochemical parameters of yeasts are changed not only by the culture temperature but also by the measurement temperature; only when the measurement temperature is equal to the growth temperature a coherent relation between in vitro adhesion data and interaction free energies can be established. In this sense, the adhesion to glass is mediated by long-range forces or, what amounts to the same thing, by Lifshitz-van der Waals interaction free energy. On the other hand, the adhesion to silicone rubber seems to be moderated by acid-base interaction free energy, which involves the presence of short-range forces. Based on these results, it can be assumed that the substratum surface properties are directly related to the kind of force acting on the initial microbial adhesion process, while cell surface properties dictate the changes in the strength of the force between different samples.  相似文献   

2.
The tribological properties of alumina ceramic are excellent due in part to a high wettability because of the hydrophilic surface and fluid film lubrication that minimizes the adhesive wear. Such surfaces are further modified with bioactive glass/ceramic coating to promote direct bone apposition in orthopedic applications. The present communication reports the biomimetic coating of calcium hydroxyapatite (HAp) on dense (2-3% porosity) alumina (alpha-Al(2)O(3)) substrate (1cmx1cmx0.5cm), at 37 degrees C. After a total period of 6 days immersion in simulated body fluid (SBF), at 37 degrees C, linear self-assembled porous (pore size: approximately 0.2mum) structures (length: approximately 375.39mum and width: 5-6mum) of HAp were obtained. The phenomenon has been demonstrated by self-assembly and diffusion-limited aggregation (DLA) principles. Structural and compositional characterization of the coating was carried out using SEM with EDX facility, XRD and FT-IR data.  相似文献   

3.
Deposition to glass of Streptococcus salivarius HB-C12 and Staphylococcus epidermidis 3399 in a parallel plate flow chamber in the absence and presence of an externally applied electric field has been studied experimentally. No effect on bacterial adhesion, including initial deposition rates, numbers of adhering bacteria after 4 h, spatial distributions of adhering bacteria and air bubble induced detachment, was found. A theoretical analysis shows that electric fields applied over a 150 μm thin glass substratum do not have a sufficiently strong effect on its surface potential to influence bacterial adhesion.  相似文献   

4.
Study of bioadhesion on a flat plate with a yeast/glass model system   总被引:3,自引:0,他引:3  
The attachment of microorganisms to a surface is a critical first step of biofilm fouling in membrane processes. The shear-induced detachment of baker's yeast in adhesive contact with a plane glass surface was thus experimentally studied, using a specially designed shear stress flow chamber. The yeast was marketed either as rod-shaped pellets (type I yeast) or as spherical pellets (type II yeast). A complete series of experiments for measuring the shear stress necessary to detach a given proportion of individual yeast cells of type I or II was performed under different environmental conditions (ionic strength, contact time). In parallel, the surface physicochemical properties of the cells (surface charge, hydrophobicity, and electron donor and electron acceptor components) were determined. For the first type of yeast cells, which were rather hydrophilic, adhesion to the glass plate was weak. This was due to both electrostatic effects and hydrophilic repulsion. Furthermore, adhesion was not sensitive to any variation of the ionic strength. For yeast of the second type, adhesion was drastically increased. This could be explained by their physicochemical surface properties and especially their hydrophobic and electron acceptor components, which caused strong attractive van der Waals and Lewis acid-base interactions, counterbalancing the electrostatic repulsion. For increasing ionic strengths, adhesion was greater, due to lower electrostatic repulsion. The results were quantified through the definition of a critical wall shear stress ( tau w 50% ) required to detach 50% of the yeast cells initially deposited on the glass surface. The influence of the contact time was also evaluated and it was shown that, whatever the type of yeast, macromolecules such as proteins were released into the extracellular medium due to cell lysis and could contribute to the formation of a conditioning film. As a result, the cells were more strongly stuck to the glass plate.  相似文献   

5.
The antigen I/II family of surface proteins is expressed by oral streptococci, including Streptococcus mutans, and mediates specific binding to, among others, salivary films. The aim of this study was to investigate the interaction forces between salivary proteins and S. mutans with (LT11) and without (IB03987) antigen I/II through atomic force microscopy (AFM) and to relate these interaction forces with the adhesion of the strains to saliva-coated glass in a parallel plate flow chamber. Upon approach of the bacteria toward a saliva-coated AFM tip, both strains experienced a similar repulsive force that was significantly smaller at pH 6.8 (median 3.0 and 3.1 nN for LT11 and IB03987, respectively) than at pH 5.8 (median 4.6 and 4.7 nN). The decay length of these repulsive forces was between 19 and 37 nm. Upon retraction at pH 6.8, the combined specific and nonspecific adhesion forces were significantly stronger for the parent strain LT11 (median -0.4 nN) than for the mutant strain IB03987 (median 0.0 nN), whereas at pH 5.8 the median of the adhesion forces measured was 0.0 nN for both strains. Moreover, at pH 6.8, the parent strain LT11 adhered in significantly higher numbers (9.6 x 106 cm-2) to a salivary coating than the mutant strain IB03987 (2.5 x 106 cm-2). Similar to the difference in adhesion forces between both strains at pH 5.8, the difference in adhesion between both strains also disappeared at pH 5.8, which suggests the involvement of attractive electrostatic forces in the interaction between antigen I/II and salivary coatings. In summary, this study shows that antigen I/II at the surface of S. mutans LT11 is responsible for its increased adhesion to salivary coatings under flow through an additional attractive electrostatic force.  相似文献   

6.
Glass surfaces were modified by end-grafting poly(ethylene oxide) (PEO) chains having molecular weights of 526, 2000, or 9800 Da. Characterization using water contact angles, ellipsometry, and X-ray photoelectron spectroscopy confirmed the presence of the PEO brushes on the surface with estimated lengths in water of 2.8-, 7.5-, and 23.7-nm, respectively. Adhesion of two bacterial (Staphylococcus epidermidis and Pseudomonas aeruginosa) and two yeast (Candida albicans and Candida tropicalis) strains to these brushes was studied and compared to their adhesion to bare glass. For the bacterium P. aeruginosa and the yeast C. tropicalis, adhesion to the 2.8-nm brush was comparable to their adhesion on bare glass, whereas adhesion to the 7.5- and 23.7-nm brushes was greatly reduced. For S. epidermidis, adhesion was only slightly higher to the 2.8-nm brush than that to the longer brushes. Adhesion of the yeast C. albicans to the PEO brushes was lower than that to glass, but no differences in adhesion were found between the three brush lengths. After passage of an air bubble, nearly all microorganisms adhering to a brush were removed, irrespective of brush length, whereas retention of the adhering organisms on glass was much higher. No significant differences were found in adhesion nor retention between experiments conducted at 20 and those conducted at 37 degrees C.  相似文献   

7.
Initial adhesion is a determinant in the development of microbial biofilms. It is influenced, amongst others, by the surface hydrophobicity and the electrostatic characteristics of the substratum and adhering organisms. Enterococcus faecalis strains, grown in pure cultures, generally display subpopulations with different electrokinetic features, reflected in a bimodal electrophoretic mobility distribution. Here, the initial adhesion kinetics of five heterogeneous and five homogeneous E. faecalis strains were followed in a parallel-plate flow chamber. After 4h of flow, heterogeneous strains adhered in significantly higher numbers than homogeneous strains (7.3 x 10(6) and 1.9 x 10(6)cm(-2), respectively), but the initial deposition rates were not significantly influenced (740 and 600 cm(-2)s(-1), respectively). Apparently, initial deposition of bacteria is mainly governed by attractive Lifshitz-Van der Waals forces that overwhelm the electrostatic repulsion energy barrier, thus resulting in similar initial deposition rates for the various bacterial populations investigated. In contrast, during later stages of adhesion, bacteria in heterogeneous cultures likely experience a lower electrostatic repulsion from already adhering bacteria than bacteria in homogeneous cultures, thus allowing a closer proximity of the bacteria with respect to each other, which ultimately leads to increased adhesion after 4 h.  相似文献   

8.
Using a new phase-contrast microscopy-based method of analysis, sedimentation has recently been demonstrated to be the major mass transport mechanism of bacteria towards substratum surfaces in a parallel plate flow chamber (J. Li, H.J. Busscher, W. Norde, J. Sjollema, Colloid Surf. B. 84 (2011) 76). Here we describe a novel method for enumerating adhesion of fluorescent bacteria in a parallel plate flow chamber that allows direct imaging of the bacterial distribution along the length of the flow chamber, as caused by sedimentation. Imaging of fluorescence was done using macroscopic bio-optical imaging of the entire flow chamber, including top and bottom plates as well as of the flowing suspension in between. An algorithm is forwarded that allows to separate the fluorescence arising from the suspension and bottom plate and at the same time determines the single cell fluorescence from which the bacterial distribution over the entire bottom plate can be visualized. Enumeration of the numbers of bacteria adhering to the center of the glass bottom plate for a fluorescent Staphylococcus aureus strain was found to coincide with enumerations using phase-contrast microscopy. Moreover, due to the use of macroscopic bio-optical imaging, it was found that the number of adhering staphylococci increases linearly with distance from the inlet of the flow chamber, which could be explained from a simplified mass balance of convection, sedimentation and blocking near the bottom plate of the flow chamber.  相似文献   

9.
A quantitative estimate for the intensity of interphase acid-base interactions is proposed based on the acid and base parameters of the free surface energy of polymer adhesives and substrates of a different nature. An interaction between acid-base and strength characteristics of adhesive compounds is established. An increase in the adhesive strength with an increase in the difference between the surface acid and base properties of connected materials is revealed for a number of compounds (polyolefine-metal, rubber mixtures-brass, and Thiokol compounds-glass).  相似文献   

10.
Deposition of the oral bacteriumStreptococcus sobrinus HG977 onto glass (water contact angle 0°) and onto FEP-Teflon (fluoroethylenepropylene; water contact angle 110°) was studied in a parallel-plate flow chamber in the presence and absence of polyclonal antibodies (pAb) and monoclonal antibodies (mAbs) adsorbed onto the cells. The zeta potentials of the bacteria ranged from −7.1 to −8.5 mV at pH 6.8 and were not affected by the presence of pAb or mAbs. Hydrophobicity (by water contact angles) increased from 30° (no antibodies) to 88° in the presence of pAb adsorbed onto the bacterial cell surface. The untreatedS. sobrinus had a greater tendency to adhere to glass (44.5 × 106 cm−2) than to FEP-Teflon (18.3 × 106 cm−2), in accordance with thermodynamic modelling. After preincubation ofS. sobrinus with pAb, its clear preference for adhesion to glass disappeared as expected from its increased hydrophobicity. Although forS. sobrinus preincubated with OMVU10 no difference was found in hydrophobicity in comparison to the untreated bacteria, the number of bacteria adhering to glass decreased to 10.2 ¢ 106 cm−2. Formation of bacterial aggregates was found whenS. sobrinus, preincubated with pAb or OMVU10, adhered to glass and FEP. This was also observed when untreated bacteria adhered to glass coated with OMVU10, or to FEP coaled with OMVU10 or pAb. Adhesion in these experiments is therefore thought to occur via near-neighbour collection induced by the presence of pAb or mAbs. Low numbers of bacteria were removed from glass after draining the flow cell, whereas high numbers of untreated bacteria and bacteria preincubated with OMVU10 were removed from FEP.S. sobrinus cells preincubated with pAb were not removed but piled up. It was concluded that the adhesion of untreatedS. sobrinus andS. sobrinus preincubated with pAb is in accordance with thermodynamic modelling, based on the overall wettability of the cell surfaces, whereas the adhesion ofS. sobrinus preincubated with OMVU10 may be through localized interactions, not expressed in overall surface properties.  相似文献   

11.
The surface properties of three undecyl oxazoline homopolymers and two phenyl/undecyl oxazoline block copolymers (as comparison) were studied. After coating on glass slides and annealing, all films had a low critical surface energy of 21 dynes/cm. Water contact angles were higher than 107° for the most hydrophobic films. The deduction that the polymer surfaces contained close-packed methyl groups was further confirmed by electron spectroscopy chemical analysis (ESCA) angle profiling on an annealed undecyl oxazoline homopolymer film. A model was developed for the variation of elemental ratios as a function of photoelectron take-off angle. This verified that the polymer films had the polymer backbones parallel to the surface with the undecyl tails oriented toward the surface. When these block and homopolymers were coated on copy paper and glass slides, the peel strengths of pressure-sensitive adhesives with these surfaces were very low for short dwell times at room temperature. At long dwell times or at elevated temperatures, the peel strengths remained low for the homopolymers but increased greatly for the block copolymers to values higher than those in the tape on glass. After 24 h at 70°C, ESCA analysis showed that the adhesive diffused into the phenyl block domains of the diblock copolymer, generating high peel strength and cohesive failure. However, under the same annealing conditions, the triblock copolymer showed adhesive failure while peel strength increased. ESCA analysis showed very litle diffusion of the adhesive into the triblock copolymer. The homopolymers were stable toward vinyl acetate type adhesives even at elevated temperature; they were abhesive up to 100°C with no interdiffusion.  相似文献   

12.
Human skin fibroblasts were incubated at either 25 or 37 degrees C before UV irradiation. Cells incubated at 25 degrees C were more resistant to near UV radiation than cells grown at 37 degrees C, but cells grown at the lower temperature were more sensitive to 254 nm radiation. Fatty acid analysis of membranes of cells showed that cells incubated at the lower temperature contained significantly higher amounts of linoleic acid (18:2) and linolenic acid (18:3) than cells incubated at 37 degrees C. To determine if this difference in fatty acid content of the membranes was responsible for the UV survival characteristics of cells incubated at different temperatures, cells were enriched with either linoleate or linolenate during a 37 degrees C incubation period. Gas chromatography revealed that cells incorporated the supplied fatty acid. Fatty acid enriched cells were then irradiated with near UV, and survival characteristics were compared to those obtained with cells grown at the lower incubation temperature. The results suggest that the different proportion of fatty acid content of the cells is not the cause of different UV sensitivities of cells grown at 25 degrees C compared to cells grown at 37 degrees C.  相似文献   

13.
玻璃纤维表面的乙烯基单体接枝聚合   总被引:5,自引:1,他引:5  
用玻璃纤维表面处理剂MAC处理玻璃纤维后,再进行臭氧处理,使玻璃纤维的表面产生活性中心,引发苯乙烯、甲基丙烯酸甲酯、及丙烯酸等乙烯基单体在玻璃纤维表面上接枝聚合。接枝纤维的密度减小,对水的浸润性下降,红外光谱及扫描电镜观察证明玻璃纤维表面上接枝聚合物的存在。  相似文献   

14.
Binding isotherms and heats of interaction have been determined at 15, 25, and 40 degrees C for a coaggregating and a non-coaggregating oral bacterial pair. Heats of interaction were measured upon three consecutive injections of streptococci into an actinomyces suspension using isothermal titration calorimetry. After each injection, the number of streptococci injected remaining free in suspension was quantified microscopically and the degree of binding between the two bacterial strains was established. The coaggregating pair shows positive cooperative binding. The highest cooperativity, at 25 degrees C, correlates with a strong, macroscopically visible coaggregation. The non-coaggregating pair shows low cooperativity and lacks macroscopically visible coaggregation. Interactions between the coaggregating partners seem to be mainly due to specific, enthalpically saturable and favorable binding sites. Even though the enthalpic part of the interaction is saturated, cooperativity increases with consecutive injections, implying that the coaggregation phenomenon is driven by entropy gain. The change in heat capacity (DeltaC(p)) is positive for the non-coaggregating pair from 15-40 degrees C as well as for the coaggregating pair beyond 25 degrees C. At lower temperatures the coaggregating pair causes a negative DeltaC(p). The decrease in heat capacity together with an increase in entropy is considered to be indicative of hydrophobic interactions playing an important role in the formation of large coaggregates as observed for the coaggregating pair at 25 degrees C.  相似文献   

15.
The surface properties and structure of mono-, di-, and tri-aminosilane treated glass surfaces were investigated using surface analytical techniques including X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, atomic force microscopy (AFM), and streaming potential. An optimized dip-coating process was demonstrated to produce roughly silane monolayer coverage on the glass surface. The surface charge measurements indicated that aminosilanization converts the glass surface from negative to positive potentials at neutral pH values. Higher positive streaming potential was observed for tri-compared with mono- and di-aminosilane treated glass surfaces. For all aminosilane treated glass samples, the high-resolution N 1s XPS spectra indicated a preferential orientation of the protonated amino-groups towards the glass surface whereas the free amino groups were protruding outward. This study aimed to obtain uniform, reproducibly thin, strongly adhering, internally cross-linked, and high positively charged aminosilane-coated glass surfaces for the attachment of DNA fragments used in microarraying experiments.  相似文献   

16.
The adhesion strengths of pathogenic L. monocytogenes EGDe to a model surface of silicon nitride were quantified using atomic force microscopy (AFM) in water for cells grown under five different temperatures (10, 20, 30, 37, and 40 °C). The temperature range investigated was chosen to bracket the thermal conditions in which L. monocytogenes survive in the environment. Our results indicated that adhesion force and energy quantified were at their maximum when the bacteria were grown at 30 °C. The higher adhesion observed at 30 °C compared to the adhesion quantified for bacterial cells grown at 37, 40, 20, and 10 °C was associated with longer and denser bacterial surface biopolymer brushes as predicted from fitting a model of steric repulsion to the approach distance-force data as well from the results of protein colorimetric assays. Theoretically predicted adhesion energies based on soft-particle DLVO theory agreed well with the adhesion energies computed from AFM force-distance retraction data (r(2) = 0.94); showing a minimum energy barrier to adhesion at 30 °C.  相似文献   

17.
Inverse gas chromatography (IGC) was applied for the determination of the surface characteristics of Tenax carbon fibers and Akzo Nobel Twaron fibers. Furthermore, IGC procedures for the determination of dispersive and acid-base interactions were validated. The data show that too high values for the dispersive component of the surface energy are obtained when the adsorption area occupied by a single adsorbed n-alkane molecule is estimated from parameters of the corresponding liquid. Comparable values are obtained when the Doris-Gray methodology (area per methylene unit) or measured probe areas are employed. For the fibers studied in this work meaningful Gibbs energy values of the acid-base interaction were only obtained with the polarizability approach. When the dispersive interaction of the polar probes with the fiber surface was scaled to the n-alkane interaction via surface tension, the boiling point, or the vapor pressure of the probes often negative acid-base interaction energies were found. From the temperature dependence of the Gibbs energy, the enthalpy of the acid-base interactions of various probes with the carbon and Twaron aramid fibers was determined. However, from these enthalpy values no meaningful acid-base surface parameters could be obtained. Generally, the limited accuracy with which these parameters can be obtained make the usefulness of this procedure questionable. Also the Gibbs energy data of acid-base interaction can provide a qualitative basis to classify the acidity-basicity of the fiber surface. This latter approach requires only a limited data set and is sufficiently rapid to enable the use of IGC as a screening tool for fibers at a production site. For several polar probes significant concentration effects on carbon fibers were observed. At very low probe loadings the interaction with the fiber surface suddenly increases. This effect is caused by the heterogeneity of the interaction energy of the active sites at the surface. A simple procedure to measure the adsorption isotherm at infinite dilution was developed. The determination of the concentration dependence of the interaction of an n-alkane, an acidic and a basic probe was incorporated in the IGC screening procedure of carbon fibers to monitor this heterogeneity.  相似文献   

18.
The adsorption and desorption rates of 736 nm diameter polystyrene particles on glass were studiedin situ using a parallel plate flow chamber and automated image analysis. Adsorption and desorption rates were measured simultaneously during deposition, enabling the determination of initial deposition rates, blocked areas per particle, desorption rate coefficients, and the number of adhering particles in the stationary state. Deposition experiments were done from suspensions with different potassium nitrate concentrations (1, 10 and 50 mM) and at varying shear rates (15 to 200 s–1). The initial deposition rate, the desorption rate, the blocked area per particle and the number of adhering particles in the stationary state showed major variations with the shear rate and the ionic strength of the suspension. At low ionic strength, the number of adhering particles showed an oscillatory behavior in time, presumably due to a varying interaction between particle and collector surface. Blocked areas, determined from deposition kinetics, ranged 705 to 2374 cross-sections at low ionic strength, and from 10 to 564 at high ionic strength and corresponded well with those estimated from local pair distribution functions which were obtained from an analysis of the spatial arrangement of the adhering particles.  相似文献   

19.
Fibrin, the biopolymer produced in the final step of the coagulation cascade, is involved in the resistance of arterial thrombi to fragmentation under shear flow. However, the nature and strength of specific interactions between fibrin monomers are unknown. Thus, the shear-induced detachment of spherical monodispersed fibrin-coated latex particles in adhesive contact with a plane fibrin-coated glass surface has been experimentally studied, using an especially designed shear stress flow chamber. A complete series of experiments for measuring the shear stress necessary to release individual particles under various conditions (various number of fibrin layers involved in the adhesive contact, absence or presence of plasmin, the main physiological fibrinolytic enzyme) has been performed. The nonspecific DLVO interactions have been shown to be negligible compared to the interactions between fibrin monomers. A simple adhesion model based on the balance of forces and torque on particles, assuming an elastic behavior of the fibrin polymer bonds, to analyze the experimental data in terms of elastic force at rupture of an elementary intermonomeric fibrin bond has been used. The results suggested that this force (of order 400 pN) is an intrinsic quantity, independent of the number of fibrin layers involved in the adhesive contact. Copyright 2001 Academic Press.  相似文献   

20.
Surface structure relaxations caused by temperature changes at the free surface of poly(methyl methacrylate) were studied using IR-visible sum-frequency generation (SFG). A polarization-rotating technique was introduced to enhance the sensitivity of SFG for monitoring the surface structure relaxations during a cooling process. A new surface structure relaxation was observed at 67 degrees C. This temperature does not match any known structure relaxation temperatures for the bulk and is 40 degrees C below the bulk glass transition temperature. As expected for a free-surface phenomenon, the surface relaxation temperature was found to be independent of film thickness in the range of 0.1-0.5 microm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号