首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The vaporization of o-, m-, and p-dinitrobenzenes was investigated by means of the torsion-effusion method and the selected equations for vapour pressure p as a function of temperature T are:
o-dinitrobenzene: log10(patm)=(7.03±0.34)?(4270±120) KT,m-dinitrobenzene: log10(patm)=(7.66±0.28)?(4400±100) KT,p-dinitrobenzene: log10(patm)=(8.34±0.34)?(4860±120) KT
The sublimation enthalpies ΔHo(o-, 298.15 K) = (21.0 ± 0.5) kcalth mol?1, ΔHo(m-, 298.15 K) = (20.8 ± 0.2) kcalth mol?1, and ΔHo(p-, 298.15 K) = (23.0 ± 0.6) kcalth mol?1, are also derived by means of the second- and third-law treatments of the results.  相似文献   

2.
In order to elucidate the defect structure of the perovskite-type oxide solid solution La1?xSrxFeO3?δ (x = 0.0, 0.1, 0.25, 0.4, and 0.6), the nonstoichiometry, δ, was measured as a function of oxygen partial pressure, PO2, at temperatures up to 1200°C by means of the thermogravimetric method. Below 200°C and in an atmosphere of PO2 ≥ 0.13 atm, δ in La1?xSrxFeO3?δ was found to be close to 0. With decreasing log PO2, δ increased and asymptotically reached x2. The log(PO2atm) value corresponding to δ = x2 was about ?10 at 1000°C. With further decrease in log PO2, δ slightly increased. For LaFeO3?δ, the observed δ values were as small as <0.015. It was found that the relation between δ and log PO2 is interpreted on the basis of the defect equilibrium among Sr′La (or V?La for the case of LaFeO3?δ), V··O, Fe′Fe, and Fe·Fe. Calculations were made for the equilibrium constants Kox of the reaction
12O2(g) + V··o + 2FexFe = Oxo + 2Fe·Fe
and Ki for the reaction
2FexFe = FeFe + Fe·Fe·
Using these constants, the defect concentrations were calculated as functions of PO2, temperature, and composition x. The present results are discussed with respect to previously reported results of conductivity measurements.  相似文献   

3.
The heat capacity of the solid solution Mn3.2Ga0.8N was measured between 5 to 330 K by adiabatic calorimetry. A sharp anomaly with first-order character was detected at TA = (160.5±0.5) K, corresponding to a magnetic rearrangement and a lattice expansion. No sharp anomaly was observed at Tc ≈ 260 K where the magnetic ordering takes place; instead, a smooth shoulder was detected. The thermodynamic functions at 298.15 K are Cp,mR = 15.16, SmoR = 18.57, {Hmo(T)?Hmo(0)}R = 2896 K, ?{Gmo(T)?Hmo(0)}RT = 8.85. At low temperatures the coefficient for the linear electronic contribution to the heat capacity was derived: γ = (0.031±0.003) J·K?2·mol?1. Moreover, the different contributions to the heat capacity were obtained and the electronic origin of the phase transitions was established.  相似文献   

4.
The electrical conductivity of sintered specimens of nonstoichiometric CeO2?x was measured as a function of temperature (750–1500°C) and oxygen pressure (1–10?22 atm). The isothermal compositional dependence of the electrical conductivity of CeO2?x was determined by combining recently obtained thermodynamic data, x = x(PO2, T), with the conductivity data. The compositional and temperature dependence of the electrical conductivity may be represented by the expression
σ=410[x]e?(0.158+x)kT(ohm cm)?1
over the temperature range 750–1500°C and from x = 0.001 to x = 0.1.This expression was rationalized in terms of the following simple relations for (a) the electron carrier concentration
ncece=8xa03
where nCe′Ce is the number of Ce′Ce per cm3 and a0 is the lattice parameter and (b) the electron mobility
μ=5.2(10?2)e?(0.158+x)kT(cm2/V sec)
.  相似文献   

5.
Treatment of [{Ir(COD)(μ-Cl)}2] with excess of the electron-rich olefin [CN(Ar)(CH2)2NAr]2 (abbreviated as (LAr)2, Ar = C6H4Me-p or C6H4OMe-p) affords the ortho-metallated tricycle [Ir(LAr)3], which for Ar = C6H4Me-p (Ia) with HCL yields [Ir(LAr)2(LAr)]Cl (IV); X-ray data show that in IV there is an unexpectedly close Ir?C(o-aryl) contact (2;52(1) Å) involving the “free” LAr which compares with an IrC(o-aryl) distance of 2.09(3) Å in Ia or 2.07(3) Å in the ortho-metallated LAr ligand of complex IV.  相似文献   

6.
The standard enthalpy of formation of γ-UO3 has been critically assessed; the value ?(292.5 ± 0.2) kcalth mol?1 is suggested.The enthalpies of solution of β-UO3 and γ-UO3 in 3 M H2SO4 have been measured and used to derive:
ΔHf°(β?UO3, 298.15 K) = ?(291.6 ± 0.2) kcalth mol?
  相似文献   

7.
Excess volumes and ultrasonic speeds have been measured for (2-ethoxyethanol + n-heptane) at 298.15 K. Isentropic compressibilities, excess isentropic compressibilities, and the partial molar excess quantities KS, iE = ?(?ViE?p)S were calculated from the results. The excess volume is positive over the entire mole-fraction range, whereas the curves for the excess isentropic compressibility is sigmoid with negative values occurring at mole fractions of 2-ethoxyethanol greater than 0.35. A qualitatitive interpretation of the results is presented.  相似文献   

8.
Isotopic vapor-pressure differences between (CH3)2CO and (CD3)2CO have been measured by differential capacitance manometry. When combined with available absolute vapor pressures for (CH3)2CO the results may be expressed (206 to 333 K) as:
1n(pHpD) = 3642.6(K/T)2 ? 22.205(K/T) + 0.01129
  相似文献   

9.
Geometric constraints present in A2BO4 compounds with the tetragonal-T structure of K2NiF4 impose a strong pressure on the BOIIB bonds and a stretching of the AOIA bonds in the basal planes if the tolerance factor is t ? RAO√2 RBO < 1, where RAO and RBO are the sums of the AO and BO ionic radii. The tetragonal-T phase of La2NiO4 becomes monoclinic for Pr2NiO4, orthorhombic for La2CuO4, and tetragonal-T′ for Pr2CuO4. The atomic displacements in these distorted phases are discussed and rationalized in terms of the chemistry of the various compounds. The strong pressure on the BOIIB bonds produces itinerant σ1x2?y2 bands and a relative stabilization of localized dz2 orbitals. Magnetic susceptibility and transport data reveal an intersection of the Fermi energy with the d2z2 levels for half the copper ions in La2CuO4; this intersection is responsible for an intrinsic localized moment associated with a configuration fluctuation; below 200 K the localized moment smoothly vanishes with decreasing temperature as the d2z2 level becomes filled. In La2NiO4, the localized moments for half-filled dz2 orbitals induce strong correlations among the σ1x2?y2 electrons above Td ? 200 K; at lower temperatures the σ1x2?y2 electrons appear to contribute nothing to the magnetic susceptibility, which obeys a Curie-Weiss law giving a μeff corresponding to S = 12, but shows no magnetic order to lowest temperatures. These surprising results are verified by comparison with the mixed systems La2Ni1?xCuxO4 and La2?2xSr2xNi1?xTixO4. The onset of a charge-density wave below 200 K is proposed for both La2CuO4 and La2NiO4, but the atomic displacements would be short-range cooperative in mixed systems. The semiconductor-metallic transitions observed in several systems are found in many cases to obey the relation Ea ? kTmin, where ? = ?0exp(?EakT) and Tmin is the temperature of minimum resistivity ?. This relation is interpreted in terms of a diffusive charge-carrier mobility with Ea ? ΔHm ? kT at T = Tmin.  相似文献   

10.
The electrical conductivity of polycrystalline strontium titanate with (SrTi = 0.996, 0.99, and 0.98 was determined for the oxygen partial pressure range of 100 to 10?22 atm and the temperature range of 850–1050°C. These data were found to be similar to that obtained for the sample with ideal cationic ratio. The observed data were proportional to the ?16 power of oxygen partial pressure for PO2 < 10?15atm, proportional to P?14O2 for the pressure range 10?8–10?15 atm, and proportional to P+14O2 for PO2 > 10?4atm. The deviation from the ideal Sr-to-Ti ratio was found to be accommodated by neutral vacancy pairs, (V″Sr V″0. The results indicate that the single-phase field of strontium titanate extends beyond 50.505 mole% TiO2 at elevated temperatures.  相似文献   

11.
The phase relationships of poly(N-vinyl-3,6-dibromo carbazole) (PVK-3, 6-Br2) were examined for four solvents, viz, o-chlorophenol, p-chloro-m-cresol, o-dichlorobenzene and bromobenzene. Upper critical solution temperatures (UCST) have been determined for solutions of PVK-3,6-Br, fractions in o-chlorophenol and p-chloro-m-cresol over the molecular weight range Mw × 10?4 = 125.0 to 4.8. The Flory temperature, θ, obtained from UCST for the PVK-3,6-Br2/o-chlorophenol and PVK-3,6-Br2/p-chloro-m-cresol systems are 66.0 and 112.9°C, respectively. The θ-temperatures were checked against molecular weight and viscosity data to determine the Mark-Houwink equations for these two theta solvents, with satisfactory agreement. The relations are
[ν] = 27.54 × 10?10 × M0.50w (o-chlorophenol, 60.0°C
[ν] = 30.24 × 10?10 × M0.50w (p-chloro-mcresol, 112.9°C
The characteristic ratio C = 〈R20/nl2 was found to be 16.6 in o-chlorophenol at 60.0°C and 17.6 in p-chloro-m-cresol at 112.9°C. The value of the characteristic ratio C of PVK-3,6-Br2 is of the same order of that for poly(N-vinyl carbazole). This indicates that the bromine atoms at the 3 and 6 (meta) positions have only an inappreciable effect on the hindering potential for rotation about the CC bond. This agreement of C for both polymers may also be taken as indicating that the effect of interaction between polar groups at the m-position on the hindering potential for rotation is small. The phase diagrams of PVK-3,6-Br2 obtained in o-dichlorobenzene and bromobenzene seem to be characteristic of organized phase structures such as those found in systems exhibiting thermoreversible gelation. Light scattering measurement on PVK-3,6-Br2 dissolved in o-dichlorobenzene, a gelation promoting solvent, and tetrahydrofuran, a very good solvent, strongly indicate that the macromolecular species in o-dichlorobenzene contain some extent supermolecular structures (aggregates, association of chain segments, etc.). These characteristic structures of PVK-3,6-Br2 in o-dichlorobenzene and bromobenzene at 25°C are also characterized by high values of the Huggins' constant k′; for tetrahydrofuran solutions, the k′ values were in the range normally found for many good solvent-polymer systems.  相似文献   

12.
Ultrasonic speeds were determined for binary mixtures of 2-methylpentan-1-ol with n-hexane and each of its four isomers. Measurements were made over the whole mole-fraction range with particular attention given to the region of high dilution with respect to the alcohol. The results were combined with excess molar volumes reported previously to obtain values of the excess molar quantity KS,mE = ?(?VmE?p)s and the corresponding partial molar derivatives.  相似文献   

13.
The electrical conductivity and departure from the stoichiometry of Nd2O3 have been measured over the temperature range of 900° to 1100°C and oxygen partial pressure of 1 to 10?16 atm. The hole conductivity of Nd2O3 is found to be proportional to P1nO2, where n are 4.6, 4.9, and 5.1 at 900°, 1000°, and 1100°C, respectively. From the oxygen partial pressure dependence of the hole conductivity, it is shown that the predominant point defects in nonstoichiometric NdO1·+x are fully ionized and partially doubly ionized metal vacancies. From the thermogravimetric measurements, the departure from stoichiometry, x in NdO1·5+x, is 2.0 × 10?3 at 1000°C and 1 atm. By combining the electrical conductivity and weight change data, it is shown that the hole mobility is 6.3 × 10?4 (cm2/V·sec) at 1000°C and 1 atm.  相似文献   

14.
Photon-correlation spectroscopy has been used to measure the diffusion coefficient D and first-mode intramolecular relaxation time τ1 of polystyrene in a theta solvent, cyclohexane at 34.5°C. Measurements were made on five narrow fractions (Mw = 2.88 × 106 to 9.35 × 106) as a function of concentration c, in the dilute regime. D varied linearly with c, D = Do (I + kDc), with Do = (1.4 ± 0.2) × 10?4Mw?(0.508±0.007) cm2 s?1. Although the values obtained for τ1 were reproducible to within 5%, no systematic variation with c was detected. The results are fitted by the relation τ1 = (7.7 ? 0.3) × 10?8Mw(1.42±0.05) μs, which agrees well with the theoretical expression of Zimm for the non-draining bead-and-spring model, modified for the light-scattering case.  相似文献   

15.
The electrical conductivity of polycrystalline CaTiO3 was measured over the temperature range 800–1100°C while in thermodynamic equilibrium with oxygen partial pressures from 10?22 to 100 atm. The data were found to be proportional to the ?16th power of the oxygen partial pressure for the oxygen pressure range 10?16 – 10?22 atm, proportional to P?14O2 for the oxygen pressure range 10?8 – 10?15 atm, and proportional to P+14O2 for the oxygen pressure range greater than 10?4 atm. The region of linearity where the electrical conductivity varies as ?14th power of PO2 increased as the temperature was decreased. The observed data are consistent with the presence of small amounts of acceptor impurities in CaTiO3. The band-gap energy (extrapolated to zero temperature) was estimated to be 3.46 eV.  相似文献   

16.
The electrical conductivity of polycrystalline SrTiO3 was determined for the oxygen partial pressure range of 10° to 10?22 atm and temperature range of 800 to 1050°C. The data were found to be proportional to the ?16th power of the oxygen partial pressure for the oxygen pressure range 10?15–10?22 atm, proportional to P?14O2 for the oxygen pressure range 10?8–10?15 atm, and proportional to P+14O2 for the oxygen pressure range 100–10?3 atm. These data are consistent with the presence of very small amounts of acceptor impurities in SrTiO3.  相似文献   

17.
The compound Th0.25 NbO3 melts congruently at 1390°C. Single crystals obtained by slow cooling from the melt are transparent and show uniaxial optical properties. A single-crystal X-ray analysis confirms the tetragonal cell found by Kovba and Trunov from a powder data and gives a = 3.90 Å and c = 7.85 Å. No systematic absence of the hkl reflections is observed on precession films. The relative intensities of the main reflections are characteristic of a perovskite-like arrangement ABO3 whose large dodecahedral A sites are only partly occupied. Several domains have been found in the perovskite-type solid solution (1 ? x) Th0.25NbO3-x NaNbO3. For 0 ? x ? 0.5 the phases have a tetragonal cell with a ? a0 and c ? 2a0 as in pure Th0.25 NbO3. When 0.6 ? x ? 0.8 the corresponding phases crystallize with a small cubic cell (a0 ? 3.9Å), while phases with 0.9 ? x ? 1 have an orthorhombic cell (a ? 212a0, b ? 212a0, c ? a0).  相似文献   

18.
We present the heat capacities measured by adiabatic calorimetry from 6 to 350 K, and by differential scanning calorimetry from 300 to 500 K, of CsCrCl3 and RbCrCl3. A first-order transition at Tc = (171.1±0.1) K was detected for CsCrCl3. The RbCrCl3 showed at Tc = (193.3±0.1) K a transition with thermal hysteresis at temperatures just below the maximum. At T1 = (440±10) K a continuous transition was also detected. Furthermore, at TN ≈ 16 K, and for both compounds, a small bump due to magnetic long-range ordering was observed. The thermodynamic functions at 298.15 K are
  相似文献   

19.
In the field of anionic initiators of ethylene oligomerization, we have studied the reactivity of nBuLi complexed by tertiary amines such as tetramethylethylenediamine (TMEDA), tetraethylethylenediamine (TEEDA) and pentamethyldiethylenetriamine (PMDT). RMN shows high field shift of the —CH2— protons next to the lithium. This shift is less important for TEEDA compared to those for TMEDA and PMDT. Steric hindrance due to the ethyl groups of TEEDA seems to forbid easy access of the nitrogen atoms to the lithium counter-ion. These results agree well with the kinetic studies which indicate the absence of aggregated species. The following equations have been established: Vp = kp·K12D[(nBuLi:TMEDA)2]12[Et]. and Vp = kp[nBuLi:TEEDA][Et]  相似文献   

20.
The heat capacity of a sample of Cs2CrO4 was determined in the temperature range 5 to 350 K by aneroid adiabatic calorimetry. The heat capacity at constant pressure Cpo(298.15 K), the entropy So(298.15 K), the enthalpy {Ho(298.15 K) - Ho(0)} and the function ? {Go(298.15 K) - Ho(0)}298.15K were found to be (146.06 ± 0.15) J K?1 mol?1, (228.59 ± 0.23) J K?1 mol?1, (30161 ± 30) J mol?1, and (127.43 ± 0.13) J K?1 mol?1, respectively. The heat capacity Cpo(298.15 K) and entropy So(298.15 K) and entropy So(298.15 K) of Rb2CrO4 are estimated to be (146.0 ± 1.0) J K?1 mol?1 and (217.6 ± 3.0) J K?1 mol?1, respectively.  相似文献   

Cp,mRSmoR{Hmo(T)?Hmo(0)}RK?{Gmo(T)?Hmo(0}RT
CsCrCl315.3826.493503.214.735
RbCrCl315.7625.993556.814.384
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号