首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
In the paper, a generalized sub-equation method is presented to construct some exact analytical solutions of nonlinear partial differential equations. Making use of the method, we present rich exact analytical solutions of the onedimensional nonlinear Schrfdinger equation which describes the dynamics of solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. The solutions obtained include not only non-traveling wave and coefficient function's soliton solutions, but also Jacobi elliptic function solutions and Weierstra.ss elliptic function solutions. Some plots are given to demonstrate the properties of some exact solutions under the Feshbachmanaged nonlinear coefficient and the hyperbolic secant function coefficient.  相似文献   

2.
Based on a type of elliptic equation,a new algebraic method to construct a series of exact solutions for nonlinear evolution equations is proposed,meanwhile,its complete implementation TRWS in Maple is presented.The TRWS can output a series of travelling wave solutions entirely automatically,which include polynomial solutions,exponential function solutions,triangular function solutions,hyperbolic function solutions,rational function solutions,Jacobi elliptic function solutions,and Weierstrass elliptic function solutions.The effectiveness of the package is illustrated by applying it to a variety of equations.Not only are previously known solutions recovered but also new solutions and more general form of solutions are obtained.  相似文献   

3.
A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the corresponding system of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2 1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.  相似文献   

4.
We describe the Jacobi elliptic function method for finding exact periodic wave solutions to nonlinear evolution equations.We present a Maple packaged automated Jacobi elliptic function method,which can entirely automatically output the exact periodic wave solutions.The effectiveness of the automated Jacobi elliptic function method is demonstrated using as examples the spplication to a variety of equations with physical interest.Not only are the previously known solutions recovered but in some cases new solutions and more general forms of solutions are obtained.  相似文献   

5.
In this letter, abundant families of Jacobi elliptic function envelope solutions of the N-coupled nonlinear Schroedinger (NLS) system are obtained directly. When the modulus m → 1, those periodic solutions degenerate as the corresponding envelope soliton solutions, envelope shock wave solutions. Especially, for the 3-coupled NLS system, five types of Jacobi elliptic function envelope solutions are illustrated both analytically and graphically. Two types of those degenerate as envelope soliton solutions.  相似文献   

6.
In this letter the three-dimensional nonlinear Helmholtz equation is investigated, which describes electro-magnetic wave propagation in a nonlinear Kerr-type medium such that sixteen families of new Jacobi elliptic functionsolutions are obtained, by using our extended Jacobian elliptic function expansion method. When the modulus m → 1or0, the corresponding solitary waves including bright solitons, dark solitons and new line solitons and singly periodicsolutions can be also found.  相似文献   

7.
In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.  相似文献   

8.
马正义 《中国物理》2007,16(7):1848-1854
Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitrary functions for two nonlinear physical models are obtained. Based on one of the variable separation solutions and by choosing appropriate functions, new types of interactions between the multi-valued and single-valued solitons, such as a peakon-like semi-foldon and a peakon, a compacton-like semi-foldon and a compacton, are investigated.  相似文献   

9.
An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for probability amplitude of spins carefully. The elliptic function wave solutions of the model are found under specific boundary condition, for example, the two ends of the atomic chain are fixed. In the case of limit the elliptic function wave solutions are reduced into spin-wave-like or solitons.  相似文献   

10.
An extended Jacobian elliptic function expansion method is presented and successfully applied to the nonlinear Schr?dinger (NLS) equation and Zakharov equation. We obtain some new solutions besides Fu et al's results. The results show that our method is more powerful to construct Jacobian elliptic function and can be applied to other nonlinear physics systems.  相似文献   

11.
The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schr ödinger equation. When the modulous m→1 or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.  相似文献   

12.
李画眉 《中国物理》2005,14(2):251-256
利用映射方法和一个适当的变换,得到大量的有弱偏置磁场及含时激光场中的非线性Gross-Pitaevskii方程的新解,这些解包括椭圆函数解,椭圆函数叠加解,三角函数解,亮孤子解,暗孤子解和类孤子解。  相似文献   

13.
In this paper, by introducing some appropriate transformation and with the help of symbolic computation, we study exact travelling wave solutions for the high-order modified Boussinesq equation, a single nonlinear reaction-diffusion equation and a generalized nonlinear Schrödinger equation with nonlinear terms of any order by use of the extended-tanh method. Thus, some new exact travelling-wave solutions, which contain kink-shaped solitons, bell-shaped solitons, periodic solutions, combined formal solitons, rational solutions and singular solitons for these equations, are obtained.  相似文献   

14.
《Physics letters. A》2006,349(6):422-429
We derive two new solutions in terms of elliptic functions, one for the dark and one for the bright soliton regime, for the semi-discrete cubic nonlinear Schrödinger equation of Ablowitz and Ladik. When considered in the complex plane, these two solutions are identical. In the continuum limit, they reduce to known elliptic function solutions. In the long wave limit, the dark one reduces to the collision of two discrete dark solitons, and the bright one to a discrete breather.  相似文献   

15.
LI Biao  CHEN Yong   《理论物理通讯》2007,48(9):391-398
In the paper, a generalized sub-equation method is presented to construct some exact analytical solutions of nonlinear partial differential equations. Making use of the method, we present rich exact analytical solutions of the onedimensional nonlinear Schr(o)dinger equation which describes the dynamics of solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. The solutions obtained include not only non-traveling wave and coefficient function's soliton solutions, but also Jacobi elliptic function solutions and Weierstrass elliptic function solutions. Some plots are given to demonstrate the properties of some exact solutions under the Feshbachmanaged nonlinear coefficient and the hyperbolic secant function coefficient.  相似文献   

16.
A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the correspondingsystem of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2 1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.  相似文献   

17.
An averaged variational principle is applied to analyze the nonlinear effect of transverse perturbations (including diffraction) on quasi-one-dimensional soliton propagation governed by various wave equations. It is shown that parameters of the spatiotemporal solitons described by the cubic Schrödinger equation and the Yajima-Oikawa model of interaction between long-and short-wavelength waves satisfy the spatial quintic nonlinear Schrödinger equation for a complex-valued function composed of the amplitude and eikonal of the soliton. Three-dimensional solutions are found for two-component “bullets” having long-and short-wavelength components. Vortex and hole-vortex structures are found for envelope solitons and for two-component solitons in the regime of resonant long/short-wave coupling. Weakly nonlinear behavior of transverse perturbations of one-dimensional soliton solutions in a self-defocusing medium is described by the Kadomtsev-Petviashvili equation. The corresponding rationally localized “lump” solutions can be considered as secondary solitons propagating along the phase fronts of the primary solitons. This conclusion holds for primary solitons described by a broad class of nonlinear wave equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号