首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Room temperature ionic liquids (RTIL) are molten salts that are liquids at room temperature. Their liquid state makes them possible candidates as solvents in countercurrent chromatography (CCC), which uses solvents as both the mobile and stationary phases. The study focuses on 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6), an easy to synthesize and purify RTIL whose melting point is –8°C. It is shown that BMIM PF6 behaves like a solvent of significant polarity (comparable with that of ethanol). The ternary phase diagram water–acetonitrile–BMIM PF6 is given, because it was necessary to add acetonitrile to reduce the ionic liquid viscosity. The 40:20:40% w/w water–acetonitrile–BMIM PF6 biphasic liquid system was found to be appropriate as a biphasic liquid system for CCC. Different aromatic solutes, including bases, acids, and neutral compounds, were injected into the CCC column to estimate their distribution constants between the ionic liquid-rich phase and the aqueous phase. The resulting Kil/w constants were compared with the corresponding literature octanol–water partition coefficients, Ko/w. The important drawbacks in the use of RTIL in CCC are clearly pointed out: high viscosity producing pressure build-up, UV absorbance limiting the use of the convenient UV detector, and non-volatility precluding the use of the evaporative light-scattering detector for continuous detection.  相似文献   

2.
A novel microemulsion electrokinetic chromatography method based on peak-shift assay (p-s MEEKC) has been developed for the determination of octanol–water partition coefficients (log P o/w) of compounds. The log P o/w values of 12 compounds were determined. The RSD of obtained values were less than 5.0% except 4-tert-butylphenol (RSD = 5.9%). All log P o/w values of the investigated compounds measured by p-s MEEKC were within 0.51 logarithm unit variation as compared to the literature values, with mean difference of 0.27. Compared to the conventional MEEKC method, the novel method does not suffer from the deficiencies related to the reference compounds and migration time of microemulsion phase, and showed the potential of being an alternative method for the determination of log P o/w values of compounds without reference compounds.  相似文献   

3.
In the present work, several MEEKC systems are studied to assess their suitability for lipophilicity determination of acidic, neutral, and basic compounds. Thus, several microemulsion compositions over a wide range of pH values (from 2.0 to 12.0), containing heptane, 1?butanol and different types and amounts of surfactant (SDS or sodium cholate: from 1.3 to 3.3%) are characterized using Abraham's solvation model. The addition of acetonitrile (up to 10%) is also studied, since it increases the resolution of the technique for the most lipophilic compounds. The system coefficients obtained are very similar to those of the 1?octanol/water, used as the reference lipophilicity index, allowing simple and linear correlations between the 1?octanol/water partition values (log Po/w) and MEEKC mass distribution ratios (log kMEEKC). Variations in the microemulsion composition (aqueous buffer, surfactant, concentration of ACN) did not significantly affect the similarity of the MEEKC systems to log Po/w partition.  相似文献   

4.
The octanol-water partition coefficients (Poct) of 17 antiadrenergic beta-blocker compounds were determined by counter-current chromatography (CCC). Since CCC uses a biphasic liquid system, the octanol-water liquid system was used with essentially an octanol stationary phase and aqueous buffer mobile phase. The Poct coefficients were obtained directly without any extrapolation. The measured Poct values were in the 0.0015-4070 range (-2.8 < log Poct < 3.6). Since the beta-blocking agents are ionizable compounds, the Poct values obtained were strongly dependent on the aqueous-phase pH. The apparent Poct coefficients of the beta-blockers were determined at three different pH values (approximately 3, 7 and 11) using 0.01 M ammonium phosphate buffers saturated with octanol. A model allowed us to obtain the molecular and ionic Poct value using the solute pKa with these three experimental octanol-water coefficients. Often, the Poct coefficients of the molecular forms obtained with the CCC method differ significantly from computed literature values and/or experimental values obtained by extrapolation. Relationships between biological properties and hydrophobicity were also examined.  相似文献   

5.
The selectivity of a suitable organic solvent is key for extraction in liquid‐phase microextraction experiments. Nevertheless, the screening process remains a daunting task. Our research aimed to study the relationship between extraction efficiency and extraction solvents, analytes, and finally select the appropriate extraction solvent. In the present article, β‐blockers and six extraction solvents were chosen as the models and hollow‐fiber liquid‐phase microextraction was conducted. The relationship was built by statistical analysis on the data. Factors affecting extraction efficiency including the logarithms of the octanol/water partition coefficient (logPo/w) of analytes, acid dissociation constants, the logarithms of the octanol/water partition coefficient of solvents and pH of the sample solution were investigated. The results showed that a low water solubility of extraction solvent is the foundation to ensure higher extraction efficiency. Moreover, when ΔlogPo/w > 0, a higher extraction efficiency is observed at lower ΔlogPo/w, on the contrary, when ΔlogPo/w < 0, extraction efficiency is higher as the absolute value of ΔlogPo/w becomes greater. Finally, the relationship between enrichment factor and extraction solvents, analytes was established and a helpful guidance was provided for the selection of an optimal solvent to obtain the best extraction efficiency by liquid‐phase microextraction.  相似文献   

6.
7.
8.
The advantageous effect of n‐octanol as a mobile phase additive for lipophilicity assessment of structurally diverse acidic drugs both in the neutral and ionized form was explored. Two RP C18 columns, ABZ+ and Aquasil, were used for the determination of logkw indices, and the results were compared with those previously reported on a base‐deactivated silica column. At pH 2.5, the use of n‐octanol‐saturated buffer as the mobile phase aqueous component led to high‐quality 1:1 correlation between logkw and logP for the ABZ+ column, while inferior statistics were obtained for Aquasil. At physiological pH, the correlations were significantly improved if strongly ionized acidic drugs were treated separately from weakly ionized ones. In the latter case, 1:1 correlations between logD7.4 and logkwoct indices were obtained in the presence of 0.25% n‐octanol. Concerning strongly ionized compounds, adequate correlations were established under the same conditions; however, slopes were significantly lower than unity, while large negative intercepts were obtained. According to the absolute difference (diff = logD7.4–logkw) pattern, base‐deactivated silica showed a better performance than ABZ+, however, the latter seems more efficient for the lipophilicity assessment of highly lipophilic acidic compounds. Aquasil may be the column of choice if logD7.4<3 with the limitation, however, that very hydrophilic compounds cannot be measured.  相似文献   

9.
The addition of the homologous series of perfluorinated acids-trifluoroacetic acid (TFAA), pentafluoropropionic acid (PFPA), heptafluorobutyric acid (HFBA) to mobile phases for reversed-phase high-performance liquid chromatography (RP-HPLC) of β-blockers was tested. Acidic modifiers were responsible for acidification of mobile phase (pH 3) ensuring the protonation of the β-blockers and further ion pairs creation. The effect of the type and concentration of mobile phase additives on retention parameters, the efficiency of the peaks, their symmetry and separation selectivity of the β-blockers mixture were all studied. It appeared that at increasing acid concentration, the retention factor, for all compounds investigated, increased to varying degrees. It should be stressed that the presence of acids more significantly affected the retention of the most hydrophobic β-blockers. Differences in hydrophobicity of drugs can be maximized through variation of the hydrophobicity of additives. Thus, the relative increase in the retention depends on either concentration and hydrophobicity of the anionic mobile phase additive or hydrophobicity of analytes. According to QSRR (quantitative structure retention relationship) methodology, chromatographic lipophilicity parameters: isocratic log k and log kw values (extrapolated retention to pure water) were correlated with the molecular (log Po/w) and apparent (log Papp) octanol–water partition coefficients obtained experimentally by countercurrent chromatography (CCC) or predicted by Pallas software. The obtained, satisfactory retention-hydrophobicity correlations indicate that, in the case of the basic drugs examined in RP-HPLC systems modified with perfluorinated acids, the retention is mainly governed by their hydrophobicity.  相似文献   

10.
Monolinuron, chlortoluron, diuron, isoproturon, linuron, diflubenzuron, dimefuron, teflubenzuron, and lufenuron have been chromatographed on an RP-HPLC column and on RP-HPTLC plates with methanol–water in different volume proportions as mobile phases. The retention values log k, and RM were extrapolated to zero methanol content. Chromatographic lipophilicities (log kw, RMw, o(HPLC), and o (TLC)) were compared with measured (log Pexp) partition coefficients and with values (A log Ps, IA log P, C log P, log PKowin, and x log P) calculated by use of five different software products. The most significant correlations were found between the chromatographic lipophilicities and C log P values. Satisfactory linear correlation was also obtained between lipophilicity (log kw, RMw) and the valence Gutman index (M).  相似文献   

11.
12.
The relationship between the four components, (1) fluorescence intensity, (2) arsenic concentration, (3) pH and (4) total dissolved solids, (TDS) measured in well waters from areas in Taiwan where blackfoot disease (BFD) is endemic was studied, as well as the relationships between the four degrees of BFD and each of the above four symptomatic components, in order to evaluate the etiological factors of BFD more progressively. The following 95% confidence intervals were obtained in well water samples (n = 1189): fluorescence intensity, 26.837–32.570; arsenic concentration, 0.103–0.127 mg dm?3; pH, 7.466–7.519; and TDS 733.063–801.647 mg dm?3. Fluorescence intensities of the four degrees of BFD were not all the same (F = 64.54, P < 0.001), and nor were arsenic concentrations (F = 72.03, P < 0.001), pH values (F = 7.30, P < 0.001), nor TDS values (F = 10.76, P < 0.001). In addition, multiple comparisons indicate that the higher the epidemical degree, the higher the fluorescence intensities, arsenic concentrations and pH values become; however, such a relationship is not found for TDS values. Moreover, the fluorescence intensities have positive linear correlations with arsenic concentrations (r = 0.49, P < 0.001), pH (r = 0.25, P < 0.001), and TDS (r = 0.18, P < 0.001), as do the arsenic concentrations with pH (r = 0.22, P < 0.001). Of the four epidemical degree groups, pairs are not significantly different from one another in correlation coefficients between fluorescence intensity and arsenic concentration, which implies a steady relationship between fluorescent compounds and arsenic. We conclude that fluorescent compounds in well water, as possible etiological factors of BFD, are closely related to arsenic along with pH and TDS values in the areas where BFD is endemic. In addition, we infer that a complex is formed by fluorescent compounds, arsenic and other metals.  相似文献   

13.
Reversed-phase high-performance liquid chromatography analyses were used for the determination of the retention factor (log k) of a set of quinolinesulfonamides. The analyses utilized a mixture of acetonitrile/water as the mobile phase. The log k values were linearly dependent on the concentration of acetonitrile and extrapolated to 100% water and gave the lipophilicity parameter log kw. The parameter log PHPLC was determined from log kw values using the calibration curve obtained for five standards. The log PHPLC parameters are discussed in terms of structure–lipophilicity relationships. Furthermore, the theoretical lipophilic parameters (log Pcalc) for all compounds were calculated using chemical programs (e.g., Advanced Chemistry Development (ACD/ logP), miLogP, AlogP, ClogP, and Pallas). The determined log PHPLC and calculated log Pcalc values were compared by linear regression analysis.  相似文献   

14.
Summary The linear relationship between logk w andS derived from molecular interactions and statistical thermodynamics was investigated by four series of different polar probe solutes. For each series of similar polar solutes, structurally related compounds with similar dipolarity/polarizability and hydrogen bonding energy, a linear relationship between logk w andS was obtained. The more similar the solutes, the greater were the regression coefficients obtained. For two series of solutes with different strong polar groups resulting in different dipolarity/polarizability and hydrogen bonding energy, two parallel lines were observed in the logk w-S plots. Each line represented one series of compounds and the distance between them indicated the difference in the dipolarity/polarizability and hydrogen bonding energy. Based on the parallel lines implying information on structurally related compounds in the logk w-S plot, a method of classification of structurally related compounds was put forward and the linear logk w-S correlation for unknown components in nonaqueous RP-HPLC analysis ofAstragalus extract with isopropanol-methanol mobile phase was studied. Two nearly parallel lines were obtained in the logk w-S plot and two series of structurally related compounds were classified in this way.  相似文献   

15.
A simple, rapid, and sensitive method for the determination of traces of thirteen sulfonamide antibacterials in milk and eggs is presented. This method is based on the combination of polymer monolith microextraction (PMME) technique with hydrophilic interaction chromatography/mass spectrometry (HILIC/MS). The extraction was performed with a poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column while the subsequent separation was carried out on a Luna NH2 column by HILIC. To obtain optimum results, several parameters relating to HILIC and PMME were investigated. After optimization, acetonitrile (contain 0.05% formic acid, v/v) was used as the elution solution, which was well compatible with the mobile phase in HILIC. Good linearities were obtained for thirteen SAs with the correlation coefficients (R2) above 0.997. The limits of detection (S/N = 3) of the method were found to be 0.4–5.7 ng mL−1 of SAs in whole milk and 0.9–9.8 ng g−1 of SAs in eggs. The recoveries of thirteen SAs in two matrices ranged from 80.4 to 119.8%, with relative standard deviations less than 11.8%.  相似文献   

16.
This study reports the parametrization of the HF/6‐31G(d) version of the MST continuum model for n‐octanol. Following our previous studies related to the MST parametrization for water, chloroform, and carbon tetrachloride, a detailed exploration of the definition of the solute/solvent interface has been performed. To this end, we have exploited the results obtained from free energy calculations coupled to Monte Carlo simulations, and those derived from the QM/MM analysis of solvent‐induced dipoles for selected solutes. The atomic hardness parameters have been determined by fitting to the experimental free energies of solvation in octanol. The final MST model is able to reproduce the experimental free energy of solvation for 62 compounds and the octanol/water partition coefficient (log Pow) for 75 compounds with a root‐mean‐square deviation of 0.6 kcal/mol and 0.4 (in units of log P), respectively. The model has been further verified by calculating the octanol/water partition coefficient for a set of 27 drugs, which were not considered in the parametrization set. A good agreement is found between predicted and experimental values of log Po/w, as noted in a root‐mean‐square deviation of 0.75 units of log P. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1180–1193, 2001  相似文献   

17.
18.
19.

The retention factors in pure water for a homologous series of s-triazines were calculated by a numerical method basing on Ościk's equation and were correlated with log k w values obtained by linear and parabolic extrapolation. Chromatographic data (log k w ) were compared with the software-calculated partition coefficients in the n-octanol/water system (Alog P, IAlog P, clog P, log P Kowin , xlog P, log P ACD and log P Chem.Off.) as alternative hydrophobicity indices. The effect of organic modifier (methanol and acetonitrile) and its concentration in the mobile phase used for log k w evaluation were investigated. Very good linear correlations were found between log k w values calculated by the numerical method and log P ACD , log P Chem.Off . and clog P values, independent of organic modifier type.

  相似文献   

20.
Summary Phase separation and thermodynamic stability of water (W) — casein (C) — neutral polysaccharide (NPS) systems have been studied. Dextrans of different molecular weights D40, D150, D500 and D2000 (10–3 M w =40, 150, 500, 2000), ficoll (10–3 M w =400) and amylopectin (10-–6 M w = 38) have been used as neutral polysaccharides. Phase diagrams of W-C-NPS systems, as well as their effect on the thermodynamic stability of the molecular weight and structural features of polysaccharides, low-molecular salts, pH and temperature have been considered. There has been shown the similarity of conditions under which the stability of W-C-NPS systems is disturbed, resulting in their separation, as well as conditions favorable to self-association of casein. A decrease in the pH value, an increase in the ionic strength and a rise in temperature are favorable both to self-association of casein and separation of W-C-NPS systems. Proceeding from this fact and from the results obtained earlier for W-C-acidic polysaccharide and W-albumin-D-glucan systems, a conclusion is drawn as to the common nature of the relationship between self-association of polymers and their compatibility. At constant temperature and pH, the stability limit of W-C-NPS systems is determined by the concentrations of polymers (w 2 andw 3) and salt (C4). The totality of cloud points C 4 * (pH) at givenw 2 andw 3 being considered as the stability limit. It is also shown that the relationship C 4 * (pH) is an increasing function within the range of pH values from 6.5 to 11.5 and in all cases where lim C 4 * (pH)=0. The sequence of values 947-1PHPH IEP C 4 * is determined by the nature of the low-molecular salt (Na2SO4 NaCl KSCN) and the specific nature of the polysaccharides (D2000 amylopectin < D 150 < ficoll < D 40).W-C-NPS-NaCl have been found to possess a lower critical point in a system of coordinates: temperature-composition. W-C-NPS-urea (6M) systems feature, in a system of coordinates: pH-polymer concentration, two areas of separation, overlapping at sufficiently high total concentrations. This fact is indicative of the specific nature of interaction of casein macromolecules capable of association near the isoelectric point due to interaction of charge fluctuations and, in the acid region, due to interaction of non-ionized carboxyl groups. The obtained results are discussed with the stability limit being expressed in terms of second virial coefficients.With 13 figures and 2 tables  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号