首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Thermoplastic elastomers (TPEs) are block copolymers made up of “hard” (glassy or crystalline) and “soft” (rubbery) blocks that self-organize into “domain” structures at a length scale of a few tens of nanometers. Under typical processing conditions, TPEs also develop a “polydomain” structure at the micron level that is similar to that of metal polycrystals. Therefore, from a continuum point of view, TPEs may be regarded as materials with heterogeneities at two different length scales. In this work, we propose a constitutive model for highly oriented, near-single-crystal TPEs with lamellar domain morphology. Based on small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) observations, we consider such materials to have a granular microstructure where the grains are made up of the same, perfect, lamellar structure (single crystal) with slightly different lamination directions (crystal orientations). Having identified the underlying morphology, the overall finite-deformation response of these materials is determined by means of a two-scale homogenization procedure. Interestingly, the model predictions indicate that the evolution of microstructure—especially the rotation of the layers—has a very significant, but subtle effect on the overall properties of near-single-crystal TPEs. In particular, for certain loading conditions—namely, for those with sufficiently large compressive deformations applied in the direction of the lamellae within the individual grains—the model becomes macroscopically unstable (i.e., it loses strong ellipticity). By keeping track of the evolution of the underlying microstructure, we find that such instabilities can be related to the development of “chevron” patterns.  相似文献   

2.
In Part I of this work we derived a fairly general theory of cavitation in elastomeric solids based on the sudden growth of pre-existing defects. In this article, the theory is used to determine onset-of-cavitation surfaces for Neo-Hookean solids where the defects are isotropically distributed and vacuous. These surfaces correspond to the set of all critical Cauchy stress states at which cavitation ensues; general three-dimensional loadings are considered. Their computation requires the numerical solution of a nonlinear first-order partial differential equation in two variables. The theoretical results indicate that cavitation occurs only for stress states where the three principal Cauchy stresses are tensile, and that the required hydrostatic tensile component increases with increasing shear components. These results are confronted to finite-element simulations for the growth of a small spherical cavity in a Neo-Hookean block under multi-axial loading. Good agreement is found for a wide range of loading conditions. Comparisons with earlier results available in the literature are also provided and discussed. We conclude this work by devising a closed-form approximation to the theoretical surface, which is of remarkable accuracy and mathematical simplicity.  相似文献   

3.
This work presents an analytical framework for determining the overall constitutive response of elastomers that are reinforced by rigid or compliant fibers, and are subjected to finite deformations. The framework accounts for the evolution of the underlying microstructure, including particle rotation, which results from the finite changes in geometry that are induced by the applied loading. In turn, the evolution of the microstructure can have a significant geometric softening (or hardening) effect on the overall response, leading to the possible development of macroscopic instabilities through loss of strong ellipticity of the homogenized incremental moduli. The theory is based on a recently developed “second-order” homogenization method, which makes use of information on both the first and second moments of the fields in a suitably chosen “linear comparison composite,” and generates fairly explicit estimates—linearizing properly—for the large-deformation effective response of the reinforced elastomers. More specific applications of the results developed in this paper will be presented in Part II.  相似文献   

4.
This work presents a combined numerical and theoretical study of the effective behavior and statistics of the local fields in random viscoplastic composites. The full-field numerical simulations are based on the fast Fourier transform (FFT) algorithm [Moulinec, H., Suquet, P., 1994. A fast numerical method for computing the linear and nonlinear properties of composites. C. R. Acad. Sci. Paris II 318, 1417-1423], while the theoretical estimates follow from the so-called “second-order” procedure [Ponte Castañeda, P., 2002a. Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—Theory. J. Mech. Phys. Solids 50, 737-757]. Two-phase fiber composites with power-law phases are considered in detail, for two different heterogeneity contrasts corresponding to fiber-reinforced and fiber-weakened composites. Both the FFT simulations and the corresponding “second-order” estimates show that the strain-rate fluctuations in these systems increase significantly, becoming progressively more anisotropic, with increasing nonlinearity. In fact, the strain-rate fluctuations tend to become unbounded in the limiting case of ideally plastic composites. This phenomenon is shown to correspond to the localization of the strain field into bands running through the composite along certain preferred orientations determined by the loading conditions. The bands tend to avoid the fibers when they are stronger than the matrix, and to pass through the fibers when they are weaker than the matrix. In general, the “second-order” estimates are found to be in good agreement with the FFT simulations, even for high nonlinearities, and they improve, often in qualitative terms, on earlier nonlinear homogenization estimates. Thus, it is demonstrated that the “second-order” method can be used to extract accurate information not only for the macroscopic behavior, but also for the anisotropic distribution of the local fields in nonlinear composites.  相似文献   

5.
6.
Exact solutions are derived for the problem of a two-dimensional, infinitely anisotropic, linear-elastic medium containing a periodic lattice of voids. The matrix material possesses either one infinitely soft, or one infinitely hard loading direction, which induces localized (singular) field configurations. The effective elastic moduli are computed as functions of the porosity in each case. Their dilute expansions feature half-integer powers of the porosity, which can be correlated to the localized field patterns. Statistical characterizations of the fields, such as their first moments and their histograms are provided, with particular emphasis on the singularities of the latter. The behavior of the system near the void close-packing fraction is also investigated. The results of this work shed light on corresponding results for strongly non-linear porous media, which have been obtained recently by means of the “second-order” homogenization method, and where the dilute estimates also exhibit fractional powers of the porosity.  相似文献   

7.
This work presents a new constitutive model for the effective response of fiber-reinforced elastomers at finite strains. The matrix and fiber phases are assumed to be incompressible, isotropic, hyperelastic solids. Furthermore, the fibers are taken to be perfectly aligned and distributed randomly and isotropically in the transverse plane, leading to overall transversely isotropic behavior for the composite. The model is derived by means of the “second-order” homogenization theory, which makes use of suitably designed variational principles utilizing the idea of a “linear comparison composite.” Compared to other constitutive models that have been proposed thus far for this class of materials, the present model has the distinguishing feature that it allows consideration of behaviors for the constituent phases that are more general than Neo-Hookean, while still being able to account directly for the shape, orientation, and distribution of the fibers. In addition, the proposed model has the merit that it recovers a known exact solution for the special case of incompressible Neo-Hookean phases, as well as some other known exact solutions for more general constituents under special loading conditions.  相似文献   

8.
In this paper, we investigate theoretically the possible development of instabilities in fiber-reinforced elastomers (and other soft materials) when they are subjected to finite-strain loading conditions. We focus on the physically relevant class of “macroscopic” instabilities, i.e., instabilities with wavelengths that are much larger than the characteristic size of the underlying microstructure. To this end, we make use of recently developed homogenization estimates, together with a fundamental result of Geymonat, Müller and Triantafyllidis linking the development of these instabilities to the loss of strong ellipticity of the homogenized constitutive relations. For the important class of material systems with very stiff fibers and random microstructures, we derive a closed-form formula for the critical macroscopic deformation at which instabilities may develop under general loading conditions, and we show that this critical deformation is quite sensitive to the loading orientation relative to the fiber direction. The result is also confronted with classical estimates (including those of Rosen) for laminates, which have commonly been used as two-dimensional (2-D) approximations for actual fiber-reinforced composites. We find that while predictions based on laminate models are qualitatively correct for certain loadings, they can be significantly off for other more general 3-D loadings. Finally, we provide a parametric analysis of the effects of the matrix and fiber properties and of the fiber volume fraction on the onset of instabilities for various loading conditions.  相似文献   

9.
In Part I of this paper, we developed a homogenization-based constitutive model for the effective behavior of isotropic porous elastomers subjected to finite deformations. In this part, we make use of the proposed model to predict the overall response of porous elastomers with (compressible and incompressible) Gent matrix phases under a wide variety of loading conditions and initial values of porosity. The results indicate that the evolution of the underlying microstructure—which results from the finite changes in geometry that are induced by the applied loading—has a significant effect on the overall behavior of porous elastomers. Further, the model is in very good agreement with the exact and numerical results available from the literature for special loading conditions and generally improves on existing models for more general conditions. More specifically, we find that, in spite of the fact that Gent elastomers are strongly elliptic materials, the constitutive models for the porous elastomers are found to lose strong ellipticity at sufficiently large compressive deformations, corresponding to the possible onset of “macroscopic” (shear band-type) instabilities. This capability of the proposed model appears to be unique among theoretical models to date and is in agreement with numerical simulations and physical experience. The resulting elliptic and non-elliptic domains, which serve to define the macroscopic “failure surfaces” of these materials, are presented and discussed in both strain and stress space.  相似文献   

10.
Slow, large deformations of human brain tissue—accompanying cranial vault deformation induced by positional plagiocephaly, occurring during hydrocephalus, and in the convolutional development—has surprisingly received scarce mechanical investigation. Since the effects of these deformations may be important, we performed a systematic series of in vitro experiments on human brain tissue, revealing the following features. (i) Under uniaxial (quasi-static), cyclic loading, brain tissue exhibits a peculiar nonlinear mechanical behaviour, exhibiting hysteresis, Mullins effect and residual strain, qualitatively similar to that observed in filled elastomers. As a consequence, the loading and unloading uniaxial curves have been found to follow the Ogden nonlinear elastic theory of rubber (and its variants to include Mullins effect and permanent strain). (ii) Loaded up to failure, the “shape” of the stress/strain curve qualitatively changes, evidencing softening related to local failure. (iii) Uniaxial (quasi-static) strain experiments under controlled drainage conditions provide the first direct evidence that the tissue obeys consolidation theory involving fluid migration, with properties similar to fine soils, but having much smaller volumetric compressibility. (iv) Our experimental findings also support the existence of a viscous component of the solid phase deformation.Brain tissue should, therefore, be modelled as a porous, fluid-saturated, nonlinear solid with very small volumetric (drained) compressibility.  相似文献   

11.
The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. “Exact” results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.  相似文献   

12.
The conditions of development of bubble cavitation in liquid media upon shock-wave loading are found. It is s shown that, for the development of an unbounded cavitation, the bubbles should grow to certain critical sizes sufficient for their transition to a nonequilibrium state owing to the elastic energy transferred by a rarefaction wave to a liquid sample (at the stage of unloading). In contrast to low-viscosity liquids, in high-viscosity ones (such as glycerin) these conditions cannot be satisfied for any really attainable parameters of shock waves. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 2, pp. 53–63, March–April, 2000.  相似文献   

13.
This paper proposes an effective numerical method to study cavitation instabilities in non-linear elastic solids. The basic idea is to examine—by means of a 3D finite element model—the mechanical response under affine boundary conditions of a block of non-linear elastic material that contains a single infinitesimal defect at its center. The occurrence of cavitation is identified as the event when the initially small defect suddenly grows to a much larger size in response to sufficiently large applied loads. While the method is valid more generally, the emphasis here is on solids that are isotropic and defects that are vacuous and initially spherical in shape. As a first application, the proposed approach is utilized to compute the entire onset-of-cavitation surfaces (namely, the set of all critical Cauchy stress states at which cavitation ensues) for a variety of incompressible materials with different convexity properties and growth conditions. For strictly polyconvex materials, it is found that cavitation occurs only for stress states where the three principal Cauchy stresses are tensile and that the required hydrostatic stress component at cavitation increases with increasing shear components. For a class of materials that are not polyconvex, on the other hand and rather counterintuitively, the hydrostatic stress component at cavitation is found to decrease for a range of increasing shear components. The theoretical and practical implications of these results are discussed.  相似文献   

14.
This paper proposes a new homogenization framework for magnetoelastic composites accounting for the effect of magnetic dipole interactions, as well as finite strains. In addition, it provides an application for magnetorheological elastomers via a “partial decoupling” approximation splitting the magnetoelastic energy into a purely mechanical component, together with a magnetostatic component evaluated in the deformed configuration of the composite, as estimated by means of the purely mechanical solution of the problem. It is argued that the resulting constitutive model for the material, which can account for the initial volume fraction, average shape, orientation and distribution of the magnetically anisotropic, non-spherical particles, should be quite accurate at least for perfectly aligned magnetic and mechanical loadings. The theory predicts the existence of certain “extra” stresses—arising in the composite beyond the purely mechanical and magnetic (Maxwell) stresses—which can be directly linked to deformation-induced changes in the microstructure. For the special case of isotropic distributions of magnetically isotropic, spherical particles, the extra stresses are due to changes in the particle two-point distribution function with the deformation, and are of order volume fraction squared, while the corresponding extra stresses for the case of aligned, ellipsoidal particles can be of order volume fraction, when changes are induced by the deformation in the orientation of the particles. The theory is capable of handling the strongly nonlinear effects associated with finite strains and magnetic saturation of the particles at sufficiently high deformations and magnetic fields, respectively.  相似文献   

15.
To establish a compact analytical framework for the preliminary stress-wave identification of material defects, the focus of this study is an extension of the concept of topological derivative, rooted in elastostatics and the idea of cavity nucleation, to 3D elastodynamics involving germination of solid obstacles. The main result of the proposed generalization is an expression for topological sensitivity, explicit in terms of the elastodynamic Green's function, obtained by an asymptotic expansion of a misfit-type cost functional with respect to the nucleation of a dissimilar elastic inclusion in a defect-free “reference” solid. The featured formula, consisting of an inertial-contrast monopole term and an elasticity-contrast dipole term, is shown to be applicable to a variety of reference solids (semi-infinite and infinite domains with constant or functionally graded elastic properties) for which the Green's functions are available. To deal with situations when the latter is not the case (e.g. finite reference bodies or those with pre-existing defects), an adjoint field approach is employed to derive an alternative expression for topological sensitivity that involves the contraction of two (numerically computed) elastodynamic states. A set of numerical results is included to demonstrate the potential of generalized topological derivative as an efficient tool for exposing not only the geometry, but also material characteristics of subsurface material defects through a local, point-wise identification of “optimal” inclusion properties that minimize the topological sensitivity at sampling location. Beyond the realm of non-invasive characterization of engineered materials, the proposed developments may be relevant to medical diagnosis and in particular to breast cancer detection where focused ultrasound waves show a promise of superseding manual palpation.  相似文献   

16.
Through direct comparisons with experiments, Lefèvre et al. (Int. J. Frac. 192:1–23, 2015) have recently confirmed the prevailing belief that the nonlinear elastic properties of rubber play a significant role in the so-called phenomenon of cavitation—that is, the sudden growth of inherent defects in rubber into large enclosed cavities/cracks in response to external stimuli. These comparisons have also made it plain that cavitation in rubber is first and foremost a fracture process that may possibly depend, in addition to the nonlinear elastic properties of the rubber, on inertial effects and/or on the viscous dissipation innate to rubber. This is because the growth of defects into large cavities/cracks is locally in time an extremely fast process.The purpose of this Note is to provide insight into the relevance of inertial and viscous dissipation effects on the onset of cavitation in rubber. To this end, leaving fracture properties aside, we consider the basic problem of the radially symmetric dynamic deformation of a spherical defect embedded at the center of a ball made up of an isotropic incompressible nonlinear viscoelastic solid that is subjected to external hydrostatic loading. Specifically, the defect is taken to be vacuous and the viscoelastic behavior of the solid is characterized by a fairly general class of constitutive relations given in terms of two thermodynamic potentials—namely, a free energy function describing the nonlinear elasticity of the solid and a dissipation potential describing its viscous dissipation—which has been shown to be capable to describe the mechanical response of a broad variety of rubbers over wide ranges of deformations and deformations rates. It is found that the onset of cavitation is not affected by inertial effects so long as the external loads are not applied at a high rate. On the other hand, even when the external loads are applied quasi-statically, viscous dissipation can greatly affect the critical values of the applied loads at which cavitation ensues.  相似文献   

17.
In this study, two multi-scale analyses codes are newly developed by combining a homogenization algorithm and an elastic/crystalline viscoplastic finite element (FE) method (Nakamachi, E., 1988. A finite element simulation of the sheet metal forming process. Int. J. Numer. Meth. Eng. 25, 283–292; Nakamachi, E., Dong, X., 1996. Elastic/crystalline viscoplastic finite element analysis of dynamic deformation of sheet metal. Int. J. Computer-Aided Eng. Software 13, 308–326; Nakamachi, E., Dong, X., 1997. Study of texture effect on sheet failure in a limit dome height test by using elastic/crystalline viscoplastic finite element analysis. J. Appl. Mech. Trans. ASME(E) 64, 519–524; Nakamachi, E., 1998. Elastic/crystalline viscoplastic finite element modeling based on hardening–softening evaluation equation. In: Proc. of the 6th NUMIFORM, pp. 315–321; Nakamachi, E., Hiraiwa, K., Morimoto, H., Harimoto, M., 2000a. Elastic/crystalline viscoplastic finite element analyses of single- and poly-crystal sheet deformations and their experimental verification. Int. J. Plasticity 16, 1419–1441; Nakamachi, E., Xie, C.L., Harimoto, M., 2000b. Drawability assessment of BCC steel sheet by using elastic/crystalline viscoplastic finite element analyses. Int. J. Mech. Sci. 43, 631–652); (1) a “semi-implicit” finite element (FE) code and (2) a “dynamic explicit” FE code. These were applied to predict the plastic strain induced yield loci and the formability of sheet metal in the macro scale, and simultaneously the crystal texture and hardening evolutions in the micro scale. The isotropic and kinematical hardening laws are employed in the crystalline plasticity constitutive equation. For the multi-scale structure, two-scales are considered. One is a microscopic polycrystal structure and the other a macroscopic elastic plastic continuum. We measure crystal morphologies by using the SEM-EBSD apparatus with a unit of about 3.8 μm voxel, and define a three dimensional (3D) representative volume element (RVE) for the micro polycrystal structure, which satisfy the periodicity condition of crystal orientation distribution. A “micro” finite element modeling technique is newly established to minimize the total number of finite elements in the micro scale. Next, the “semi-implicit” crystallographic homogenization FE code, which employs the SEM-EBSD measured RVE, is applied to the 99.9% pure-iron uni-axial tensile problem to predict the texture evolution and the subsequent yield loci in the various strain paths. These “semi implicit” results reveal that the plastic strain induced anisotropy in the micro and macro levels can be predicted by our FE analyses. The kinematical hardening law leads a distinct plastic strain induced anisotropy. Our “dynamic-explicit” FE code is applied to simulate the limit dome height (LDH) test problem of the mild steel DQSK, the high strength steel HSLA and the aluminum alloy AL6022 sheet metals, which were adopted as the NUMISHEET2005 Benchmark sheet metals (Smith, L.M., Pourboghrat, F., Yoon, J.-W., Stoughton, T.B., 2005. NUMISHEET2005. In: Proc. of 6th Int. Conf. Numerical Simulation of 3D Sheet Metal Forming Processes, PART A and B(Benchmark), pp. 409–451) to estimate formability. The “dynamic explicit” results reveal that the initial crystal orientation distribution has a large affects to a plastic strain induced texture and anisotropic hardening evolutions and sheet formability.  相似文献   

18.
In this work, we propose a constitutive model for the finite-strain, macroscopic response of porous viscoplastic solids, accounting for deformation-induced changes in the size, shape and distribution of the voids. The model makes use of consistent homogenization estimates obtained by the “iterated variational linear comparison” procedure of Agoras and Ponte Castañeda (2013) to characterize both the instantaneous effective response of the porous material and the evolution of the underlying microstructure. The proposed model applies for general, three-dimensional loading conditions and can be implemented numerically for use in standard FEM codes. We also investigate the interplay between the evolution of the microstructure and the macroscopic stress–strain response, in the context of displacement-controlled, plane strain loading (bi-axial straining) of initially isotropic, porous, rigid-plastic materials with power-law hardening. We focus on the effect of strain triaxiality, and consider both extensional and contractile loading conditions leading to porosity growth and collapse, respectively. For both types of loadings, it is found that the macroscopic behavior of the material exhibits an initial hardening regime followed by a softening regime at sufficiently large strains. Consistent with earlier models and experimental results, the softening regime for extensional loadings is a consequence of porosity growth. On the other hand, the softening behavior predicted for contractile loadings is found to be a consequence of void collapse, i.e., of rapid changes in the average shape of the pores leading to crack-like shapes. For both types of loadings, the transition from hardening to softening in the macroscopic response can be identified with the onset of macroscopic strain localization. The associated critical conditions at the onset of localization are determined as a function of the strain triaxiality. The type of localization band ranges from dilatational to compaction bands as the bi-axial straining varies from uniaxial extension to uniaxial contraction.  相似文献   

19.
Many crystalline materials exhibit solid-to-solid martensitic phase transformations in response to certain changes in temperature or applied load. These martensitic transformations result from a change in the stability of the material's crystal structure. It is, therefore, desirable to have a detailed understanding of the possible modes through which a crystal structure may become unstable. The current work establishes the connections between three crystalline stability criteria: phonon-stability, homogenized-continuum-stability, and the presently introduced Cauchy-Born-stability criterion. Stability with respect to phonon perturbations, which probe all bounded perturbations of a uniformly deformed specimen under “hard-device” loading (i.e., all around displacement type boundary conditions) is hereby called “constrained material stability”. A more general “material stability” criterion, motivated by considering “soft” loading devices, is also introduced. This criterion considers, in addition to all bounded perturbations, all “quasi-uniform” perturbations (i.e., uniform deformations and internal atomic shifts) of a uniformly deformed specimen, and it is recommend as the relevant crystal stability criterion.  相似文献   

20.
In this paper we discuss three different experimental configurations to diagnosing the modes of inelastic deformation and to evaluating the failure thresholds at shock compression of hard brittle solids. One of the manifestations of brittle material response is the failure wave phenomenon, which has been previously observed in shock-compressed glasses. However, based on the measurements from our “theory critical” experiments, both alumina and boron carbide did not exhibit this phenomenon. In experiments with free and pre-stressed ceramics, while the Hugoniot elastic limit (HEL) in high-density B4C ceramic was found to be very sensitive to the transverse stress, it was found relatively less sensitive in Al2O3, implying brittle response of the boron carbide and ductile behavior of alumina. To further investigate the effects of stress states on the shock response of brittle materials, a “divergent flow or spherical shock wave” based plate impact experimental technique was employed to vary the ratio of longitudinal and transversal stresses and to probe conditions for compressive fracture thresholds. Two different experimental approaches were considered to generate both longitudinal and shear waves in the target through the impact of convex flyer plates. In the ceramic target plates, the shear wave separates a region of highly divergent flow behind the decaying spherical longitudinal shock wave and a region of low-divergent flow. Experiments with divergent shock loading of alumina and boron carbide ceramic plates coupled with computer simulations demonstrated the validity of these experimental approaches to develop a better understanding of fracture phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号