首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove that under natural assumptions on the data strong solutions in Sobolev spaces of semilinear parabolic equations in divergence form involving measure on the right-hand side may be represented by solutions of some generalized backward stochastic differential equations. As an application we provide stochastic representation of strong solutions of the obstacle problem by means of solutions of some reflected backward stochastic differential equations. To prove the latter result we use a stochastic homographic approximation for solutions of the reflected backward equation. The approximation may be viewed as a stochastic analogue of the homographic approximation for solutions to the obstacle problem.  相似文献   

2.
In this article, we study a type of coupled reflected forward–backward stochastic differential equations (reflected FBSDEs, for short) with continuous coefficients, including the existence and the uniqueness of the solution of our reflected FBSDEs as well as the comparison theorem. We prove that the solution of our reflected FBSDEs gives a probabilistic interpretation for the viscosity solution of an obstacle problem for a quasilinear parabolic partial differential equation.  相似文献   

3.
We study the existence and uniqueness of the solution to a forward-backward stochastic differential equation with subdifferential operator in the backward equation. This kind of equations includes, as a particular case, multi-dimensional forward-backward stochastic differential equation where the backward equation is reflected on the boundary of a closed convex(time-independent) domain. Moreover, we give a probabilistic interpretation for the viscosity solution of a kind of quasilinear variational inequalities.  相似文献   

4.
We use convex risk measures to assess unhedged risks for American-style contingent claims in a continuous-time non-Markovian economy using reflected backward stochastic differential equations (RBSDEs). A two-stage approach is adopted to evaluate the risk. We formulate the evaluation problem as an optimal stopping-control problem and discuss the problem using reflected BSDEs. The convex risk measures are represented as solutions of RBSDEs. In the Markov case, we relate the RBSDE solutions to the unique viscosity solutions of related obstacle problems for parabolic partial differential equations.  相似文献   

5.
In this work, we prove that there exists at least one solution for the reflected forward–backward stochastic differential equations satisfying the obstacle constraint with continuous monotone coefficients. The distinct character of our result is that the coefficient of the forward SDEs contains the solution variable of the reflected BSDEs.  相似文献   

6.
In this paper, we will study an indefinite stochastic linear quadratic optimal control problem, where the controlled system is described by a stochastic differential equation with delay. By introducing the relaxed compensator as a novel method, we obtain the well-posedness of this linear quadratic problem for indefinite case. And then, we discuss the uniqueness and existence of the solutions for a kind of anticipated forward–backward stochastic differential delayed equations. Based on this, we derive the solvability of the corresponding stochastic Hamiltonian systems, and give the explicit representation of the optimal control for the linear quadratic problem with delay in an open-loop form. The theoretical results are validated as well on the control problems of engineering and economics under indefinite condition.  相似文献   

7.
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion. The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected G-BSDEs, we apply a "martingale condition" instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization. We then give some applications including a generalized Feynman-Kac formula of an obstacle problem for fully nonlinear partial differential equation and option pricing of American types under volatility uncertainty.  相似文献   

8.
We study an impulse control problem in infinite horizon. To solve this problem, we extend to the infinite horizon case results of double barrier reflected backward stochastic differential equations. The properties of the Snell envelope reduce our problem to the existence of a pair of continuous processes.  相似文献   

9.
In this paper, we study reflected generalized backward doubly stochastic differential equations driven by Teugels martingales associated with Lévy process (RGBDSDELs in short) with one continuous barrier. Under uniformly Lipschitz coefficients, we prove an existence and uniqueness result by means of the penalization method and the fixed-point theorem. As an application, this study allows us to give a probabilistic representation for the solutions to a class of reflected stochastic partial differential integral equations (SPDIEs in short) with a nonlinear Neumann boundary condition.  相似文献   

10.
In this paper, we establish a local representation theorem for generators of reflected backward stochastic differential equations (RBSDEs), whose generators are continuous with linear growth. It generalizes some known representation theorems for generators of backward stochastic differential equations (BSDEs). As some applications, a general converse comparison theorem for RBSDEs is obtained and some properties of RBSDEs are discussed.  相似文献   

11.
We consider a system of forward–backward stochastic differential equations (FBSDEs) with monotone functionals. We show that such a system is well-posed by the method of continuation similarly to Peng and Wu (1999) for classical FBSDEs. As applications, we prove the well-posedness result for a mean field FBSDE with conditional law and show the existence of a decoupling function. Lastly, we show that mean field games with common noise are uniquely solvable under a linear-convex setting and weak-monotone cost functions and prove that the optimal control is in a feedback form depending only on the current state and conditional law.  相似文献   

12.
In this paper, we study the existence of the solution to one-dimensional forward–backward stochastic differential equations with neither the smooth condition nor the monotonicity condition for the coefficients. Under the nondegeneracy condition for the forward equation, we prove the existence of the solution to one-dimensional forward–backward stochastic differential equations. And we apply this result to establish the existence of the viscosity solution to a certain one-dimensional quasilinear parabolic partial differential equation  相似文献   

13.
Nonlinear BSDEs were first introduced by Pardoux and Peng, 1990, Adapted solutions of backward stochastic differential equations, Systems and Control Letters, 14, 51–61, who proved the existence and uniqueness of a solution under suitable assumptions on the coefficient. Fully coupled forward–backward stochastic differential equations and their connection with PDE have been studied intensively by Pardoux and Tang, 1999, Forward–backward stochastic differential equations and quasilinear parabolic PDE's, Probability Theory and Related Fields, 114, 123–150; Antonelli and Hamadène, 2006, Existence of the solutions of backward–forward SDE's with continuous monotone coefficients, Statistics and Probability Letters, 76, 1559–1569; Hamadème, 1998, Backward–forward SDE's and stochastic differential games, Stochastic Processes and their Applications, 77, 1–15; Delarue, 2002, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stochastic Processes and Their Applications, 99, 209–286, amongst others.

Unfortunately, most existence or uniqueness results on solutions of forward–backward stochastic differential equations need regularity assumptions. The coefficients are required to be at least continuous which is somehow too strong in some applications. To the best of our knowledge, our work is the first to prove existence of a solution of a forward–backward stochastic differential equation with discontinuous coefficients and degenerate diffusion coefficient where, moreover, the terminal condition is not necessary bounded.

The aim of this work is to find a solution of a certain class of forward–backward stochastic differential equations on an arbitrary finite time interval. To do so, we assume some appropriate monotonicity condition on the generator and drift coefficients of the equation.

The present paper is motivated by the attempt to remove the classical condition on continuity of coefficients, without any assumption as to the non-degeneracy of the diffusion coefficient in the forward equation.

The main idea behind this work is the approximating lemma for increasing coefficients and the comparison theorem. Our approach is inspired by recent work of Boufoussi and Ouknine, 2003, On a SDE driven by a fractional brownian motion and with monotone drift, Electronic Communications in Probability, 8, 122–134; combined with that of Antonelli and Hamadène, 2006, Existence of the solutions of backward–forward SDE's with continuous monotone coefficients, Statistics and Probability Letters, 76, 1559–1569. Pursuing this idea, we adopt a one-dimensional framework for the forward and backward equations and we assume a monotonicity property both for the drift and for the generator coefficient.

At the end of the paper we give some extensions of our result.  相似文献   

14.
In this paper we study the one-dimensional reflected backward stochastic differential equations which are driven by Brownian motion as well as a mutually independent martingale appearing in a defaultable setting. Using a penalization method, we prove the existence and uniqueness of the solutions to these equations. As an application, we show that under proper assumptions the solution of the reflected equation is the value of the related mixed optimal stopping-control problem.  相似文献   

15.

We deal with reflected backward stochastic differential equations with right continuous and left limited barrier. We show the existence and uniqueness of the solution and we give a comparison theorem. As an application, we study the link between such an equations with stochastic mixed control problems.  相似文献   

16.
This paper deals with existence and uniqueness of a solution in viscosity sense, for a system of m variational partial differential inequalities with inter-connected obstacles. A particular case is the Hamilton-Jacobi-Bellmann system of the Markovian stochastic optimal m-states switching problem. The switching cost functions depend on (t,x). The main tool is the notion of systems of reflected backward stochastic differential equations with oblique reflection.  相似文献   

17.
In this paper, we consider a linear–quadratic stochastic two-person nonzero-sum differential game. Open-loop and closed-loop Nash equilibria are introduced. The existence of the former is characterized by the solvability of a system of forward–backward stochastic differential equations, and that of the latter is characterized by the solvability of a system of coupled symmetric Riccati differential equations. Sometimes, open-loop Nash equilibria admit a closed-loop representation, via the solution to a system of non-symmetric Riccati equations, which could be different from the outcome of the closed-loop Nash equilibria in general. However, it is found that for the case of zero-sum differential games, the Riccati equation system for the closed-loop representation of an open-loop saddle point coincides with that for the closed-loop saddle point, which leads to the conclusion that the closed-loop representation of an open-loop saddle point is the outcome of the corresponding closed-loop saddle point as long as both exist. In particular, for linear–quadratic optimal control problem, the closed-loop representation of an open-loop optimal control coincides with the outcome of the corresponding closed-loop optimal strategy, provided both exist.  相似文献   

18.
正倒向随机微分方程源于随机控制和金融等问题的研究,反之,方程理论的研究成果在控制、金融等领域也有着重要的应用。基于正向和倒向随机微分方程的理论成果,正倒向随机微分方程的研究在短时间内取得了长足进步。本文将从方程可解性这一角度出发,对正倒向随机微分方程目前取得的成果进行系统的总结与探讨。  相似文献   

19.
In this paper, we present an optimal control problem for stochastic differential games under Markov regime-switching forward–backward stochastic differential equations with jumps. First, we prove a sufficient maximum principle for nonzero-sum stochastic differential games problems and obtain equilibrium point for such games. Second, we prove an equivalent maximum principle for nonzero-sum stochastic differential games. The zero-sum stochastic differential games equivalent maximum principle is then obtained as a corollary. We apply the obtained results to study a problem of robust utility maximization under a relative entropy penalty and to find optimal investment of an insurance firm under model uncertainty.  相似文献   

20.
This paper presents three versions of maximum principle for a stochastic optimal control problem of Markov regime-switching forward–backward stochastic differential equations with jumps. First, a general sufficient maximum principle for optimal control for a system, driven by a Markov regime-switching forward–backward jump–diffusion model, is developed. In the regime-switching case, it might happen that the associated Hamiltonian is not concave and hence the classical maximum principle cannot be applied. Hence, an equivalent type maximum principle is introduced and proved. In view of solving an optimal control problem when the Hamiltonian is not concave, we use a third approach based on Malliavin calculus to derive a general stochastic maximum principle. This approach also enables us to derive an explicit solution of a control problem when the concavity assumption is not satisfied. In addition, the framework we propose allows us to apply our results to solve a recursive utility maximization problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号