首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
硅橡胶复合绝缘子具有憎水性、强度高和重量轻等优势,被广泛应用于电力系统,然而,目前尚没有准确有效的方法来检测硅橡胶复合绝缘子的老化状态.许多学者对复合绝缘子伞裙的老化状态开展了相关研究,但目前尚未有对复合绝缘子芯棒护套老化状态的研究报道.针对这一问题,该文设计了一种能够测量弧形表面样品的核磁共振(NMR)传感器,并应用于芯棒护套老化状态的检测.首先,对产生主磁场(B0)的磁体结构进行了设计及优化,使得主磁场的分布具有和芯棒护套一样的曲率.其次,设计并优化了一种可弯曲的螺线线圈作为射频线圈.最后,用该传感器测量了3种在220 kV输电线路上挂网运行了不同年限的复合绝缘子的芯棒护套.采用CPMG脉冲序列激励样品,并得到横向弛豫衰减曲线,然后对横向弛豫衰减曲线做拉普拉斯逆变换获得横向弛豫时间(T2)谱.T2谱显示,随着运行年限的增长,复合绝缘子芯棒护套的T2会减小.因此,从T2谱中提取的T2,long mean可以作为一个衡量复合绝缘子芯棒护套老化状态的参数.  相似文献   

2.
MRI phantoms are an important part of any experiment because they provide a reference of known parameters. There are many choices of mono-exponential T2 phantoms, but few choices for bi-exponential T2 phantoms. We have found that dairy cream provides an excellent bi-exponential T2 model with similar relaxation times to those found in white matter. Five cream phantoms of different milk fat percentages (2, 6, 10, 18 and 35%) were imaged with an optimized Carr–Purcell–Meiboom–Gill sequence. The decay curves for each of the phantoms were fit using Non-Negative Least Squares. We found that the short T2 component fraction relative to the total energy in the distribution correlated linearly (r = 0.9973) with the milk fat percentage. The short T2 time was 38 ± 4 ms and the long T2 time was 135 ± 4 ms.  相似文献   

3.
Temperature-controlled measurements of the transverse relaxation time were conducted with the NMR-MOUSE (nuclear magnetic resonance mobile universal surface explorer) at 50°C to investigate the heterogeneity of rubber sheets induced by thermo-oxidative aging. With temperature stabilization the relative error ofT 2 decreased by a factor of 4 on the short time scale. Without temperature stabilization it may reach 30% in the long-time range because of temperature changes in the laboratory. Two different types of mobile temperature control units operating with the NMR-MOUSE are described. These temperature control units are small and portable like the NMR-MOUSE.  相似文献   

4.
The pulsed nuclear magnetic resonance (NMR) method at a proton frequency of 25 MHz at temperatures of 22–160°C is used to detect the transverse magnetization decay in polyisoprene rubbers with various molecular masses, to determine the NMR damping time T 2, and to measure spin-lattice relaxation time T 1 and time T 2eff of damping of solid-echo signals under the action of a sequence of MW-4 pulses modified by introducing 180° pulses. The dispersion dependences of T 2eff obtained for each temperature are combined into one using the temperature-frequency equivalence principle. On the basis of the combined dispersion dependence of T 2eff and the data on T 2 and T 1, the correlation time spectrum of molecular movements is constructed. Analysis of the shape of this spectrum shows that the dynamics of polymer molecules can be described in the first approximation by the Doi-Edwards tube-reptation model.  相似文献   

5.
A 19F pulsed NMR investigation of single crystals of CeF3 and CaF2-doped CeF3 has been undertaken in the temperature range 300–570K at a frequency of 14 and 60 MHz. It was found that the free-induction decay is non-linear and could be fit by a sum of exponentials using a nonlinear least square procedure to an appropriate functional form. The results of this analysis indicate that there are three distinct spin-spin relaxation times T2, which is consistent with the existence of three inequivalent fluorine sublattices. At room temperature, fluorine ions on two of the sublattices were found to be in motion, with the fastest ion specified as the F3-type in the Oftedal structure.The temperature dependence of the spin-spin relaxation time T2 for the fastest ions was found to undergo an inversion at 400 and 385K for the pure and doped samples, respectively. The inversion indicates an increase in the interchange rate of ions between two sublattices. Activation energies are 0.29 ± 0.02 eV in the low temperature region and 0.21 ± 0.01 eV in the high temperature region for the pure sample, with corresponding values of 0.24 ± 0.01 eV and 0.23 ± 0.02 eV for the doped sample.T1 was approximately the same for both samples, and essentially temperature independent, indicating an exchange-dominated spin-lattice decay mechanism.  相似文献   

6.
《Solid State Ionics》1988,26(3):209-215
1H NMR spin-lattice relaxation times, T1 (Zeeman) and T (rotating frame) and spin-spin relaxation times, T2, and 31P NMR solid-echoes are reported for phase I and II of hydrogen uranyl phosphate tetrahydrate (HUP) at temperatures in the range 200–323 K. The spectral density functions extracted from the measured relaxation times for phases I and II are consistent with a 2D diffusion mechanism for hydrogen motion. 31P second moments determined from the solid-echoes show that all the hydrogens diffuse rapidly in phase I, and that the hydrogen-bond site nearest to the phosphate oxygen is not occupied in phase II. The mechanism for diffusion in phase II is discussed.  相似文献   

7.
The single-sided NMR-MOUSE sensor that operates in highly inhomogeneous magnetic fields is used to record a CPMG 1H transverse relaxation decay by CPMG echo trains for a series of cross-linked natural rubber samples. Effective transverse relaxation rates 1/T2,short and 1/T2,long were determined by a bi-exponential fit. A linear dependence of transverse relaxation rates on cross-link density is observed for medium to large values of cross-link density. As an alternative to multi-exponential fits the possibility to analyze the dynamics of soft polymer network in terms of multi-exponential decays via the inverse Laplace transformation was studied. The transient regime and the effect of the T1/T2 ratio in inhomogeneous static and radiofrequency magnetic fields on the CPMG decays were studied numerically using a dedicated C++ program to simulate the temporal and spatial dependence of the CPMG response. A correction factor T2/T2,eff is derived as a function of the T1/T2 ratio from numerical simulations and compared with earlier results from two different well logging devices. High-resolution T1T2 correlations maps are obtained by two-dimensional Laplace inversion of CPMG detected saturation recovery curves. The T1T2 experimental correlations maps were corrected for the T1/T2 effect using the derived T2/T2,eff correction factor.  相似文献   

8.
We have employed deuteron nuclear magnetic resonance (NMR) spectroscopy in order to study the dynamics of the deuterated water (D2O) molecules introduced into a perfluorosulfonic acid ionomer Nafion (NR-211) film. According to the 2H NMR spectral analysis, the deuterated water molecules at low temperatures occupied either relatively rigid or mobile sites up to the temperature TM=240 K where all the deuterated water molecules became mobile. The temperature-dependent NMR linewidths sensitively reflected the motional narrowing of the rigid and mobile sites, and the NMR chemical shift reflected significant changes in the hydrogen bonds of the deuterated water. While a slow- to fast-limit motional transition was manifested at TM in the laboratory-frame NMR spin–lattice relaxation, the rotating-frame spin–lattice relaxation indicated no bulk liquid water state down to 200 K.  相似文献   

9.
G. Baskaran 《Pramana》2009,73(1):61-112
Discovery of high T c superconductivity in La2?x Ba x CuO4 by Bednorz and Muller in 1986 was a breakthrough in the 75-year long search for new superconductors. Since then new high T c superconductors, not involving copper, have also been discovered. Superconductivity in cuprates also inspired resonating valence bond (RVB) mechanism of superconductivity. In turn, RVB theory provided a new hope for finding new superconductors through a novel electronic mechanism. This article first reviews an electron correlation-based RVB mechanism and our own application of these ideas to some new noncuprate superconducting families. In the process we abstract, using available phenomenology and RVB theory, that there are five directions to search for new high T c superconductors. We call them five-fold way. As the paths are reasonably exclusive and well-defined, they provide more guided opportunities, than before, for discovering new superconductors. The five-fold ways are (i) copper route, (ii) pressure route, (iii) diamond route, (iv) graphene route and (v) double RVB route. Copper route is the doped spin-½ Mott insulator route. In this route one synthesizes new spin-½ Mott insulators and dopes them chemically. In pressure route, doping is not external, but internal, a (chemical or external) pressure-induced self-doping suggested by organic ET-salts. In the diamond route we are inspired by superconductivity in boron-doped diamond and our theory. Here one creates impurity band Mott insulators in a band insulator template that enables superconductivity. Graphene route follows from our recent suggestion of superconductivity in doped graphene, a two-dimensional broadband metal with moderate electron correlations, compared to cuprates. Double RVB route follows from our recent theory of doped spin-1 Mott insulator for superconductivity in iron pnictide family.  相似文献   

10.
Driven-equilibrium fast saturation recovery (DEFSR), as a new method for two-dimensional (2-D) nuclear magnetic resonance (NMR) relaxation measurement based on pulse sequence in flowing fluid, is proposed. The two-dimensional functional relationship between the ratio of transverse relaxation time to longitudinal relaxation time of fluid (T 1/T 2) and T 1 distribution is obtained by means of DEFSR with only two one-dimensional measurements. The rapid measurement of relaxation characteristics for flowing fluid is achieved. A set of the down-hole NMR fluid analysis system is independently designed and developed for the fluid measurement. The accuracy and practicability of DEFSR are demonstrated.  相似文献   

11.
The Hahn-echo 29Si NMR experiments performed for determinations of T2 times in static supermicroporous materials SiO2–Al2O3–MnO and SiO2–MnO have shown the large loss in the echo intensity, observed at shortest echo delays. The relaxation patterns “intensity—τ”, where the echo-intensity initially increases with increasing τ values and then it “normally” reduces due to spin–spin relaxation, are formally treated and discussed.  相似文献   

12.
La0.67Ca0.33MnO3 particle films with an average particle size of ~150 nm were grown on single-crystal silicon substrate using pulsed electron deposition technique and then focused ion beam was introduced to fabricate nanobridge in size of 300 × 900 nm on the particle film. The magneto-transport properties of both samples were studied. For the film, there is only one resistance peak at 182 K in temperature-dependent resistance (RT) curves, which is far lower than ferromagnetic–paramagnetic transition temperature (T C) of 250 K. When compared to the film, double peaks were observed in both RT curves and magnetoresistance dependent on temperature (MR–T) curves of the nanobridge, one peak is at 186 K, which is very close to metal–insulator transition temperature (T P) of film, the other one is at 250 K, which is close to the T C of film, and these two peaks caused separately by grain and grain boundary (GB), which demonstrated that the electrical transport behavior of grain was separated from that of GB.  相似文献   

13.
Both direct and indirect methods for determining soil–water characteristic curves rely on determination of some empirical coefficients, which may not necessarily represent real microscopic mechanisms. Proton nuclear magnetic resonance (NMR) is a powerful tool for investigating water content and their interaction with solid particles in porous media. The NMR technique is widely used in food science and petroleum. In the present study, proton NMR spin–spin relaxation time (T 2) distribution measurement is integrated with a Tempe apparatus to characterize the hydraulic processes of unsaturated soils, shedding insights into the microscopic mechanisms of pore water distribution and migration in the soil during hydraulic cycles. It is revealed that during a drying process the drainage of pore water occurs sequentially from larger pores to smaller pores, whereas in a wetting process the water invades into the soil sequentially from smaller pores to larger pores. A new procedure is developed which can be used to determine the pore size distribution of the soil based on the NMR T 2 distribution measurements; compared to the traditional methods, the new method is rapid and non-destructive. The new procedure is validated by comparing the new result with the measurement of the mercury intrusion porosimetry.  相似文献   

14.
87Rb and 39K nuclear magnetic resonance (NMR) spectra of RbKSO4 single crystals were measured at room temperature. 87Rb central line has the angular dependences of second-order quadrupolar shifts. From these results, the quadrupole coupling constant and the asymmetry parameter were determined at room temperature. In addition, the spin–lattice relaxation rate, 1/T1, and the spin–spin relaxation rate, 1/T2, were measured as a function of temperature. The values of 1/T1 for the 87Rb and 39K nuclei were found to increase with increasing temperature, and 1/T1 was determined to be proportional to Tn. Therefore, for the 87Rb and 39K nuclei, Raman processes with n=2 are more significantly in nuclear quadrupole relaxation than direct processes.  相似文献   

15.
《Solid State Ionics》2006,177(19-25):1673-1676
The nanocrystalline perovskite material Li0.15La0.28TaO3 has been synthesized by alkoxide-free Pechini type sol gel method. 7Li NMR measurements were carried out using a Bruker Avance 300 spectrometer at 116 MHz over the temperature range 150 to 400 K. Longitudinal spin-lattice relaxation times (T1) measured by saturation recovery and longitudinal relaxation times in the rotating frame (T) measured using the pulse sequence (π/2–spin lock τ acquisition) with lock radio-frequency field υ = 62.5 kHz and the T2 relaxation time measured by Hahn echo are presented. The static Hahn-echo spectra show two different lithium sites in this perovskite oxide. Further, the relaxation measurements T1 and T show two different types of lithium cations with fast and slow dynamics.  相似文献   

16.
Using nuclear (proton) magnetic resonance relaxometry (NMRR) was studied oil disperse systems. Dependences of NMR–relaxation parameters—spin–lattice T1i, spin–spin T2i relaxation times, proton populations P1i and P2i, and petrophysical correlations were received for light and heavy oils. Experimental results are interpreted on the base of structure-dynamical ordering of oil molecules with structure unit formation.  相似文献   

17.
Maude Ferrari 《Molecular physics》2013,111(22):2419-2430
A general theory, based on density matrix calculations, has been developed for the special case of a two-pulse sequence applied to spin 1 (14N) nuclear quadrupole resonance (NQR) of a powder sample. It is shown that the homolog of the NMR inversion-recovery experiment leads easily to the spin-lattice relaxation time T 1 (associated with the diagonal elements of the density matrix) provided that an appropriate phase cycling is used. Conversely, in spite of two-step phase cycling schemes adapted to spin-spin relaxation measurements, the homolog of the NMR Hahn spin-echo sequence may pose some problems if the results are displayed in the magnitude mode. First, at short decay times, the echo may be corrupted by unwanted signals. Secondly, in that case, the amplitude of the resulting signal can evolve unexpectedly and differently as a function of the phase of the second pulse. Thirdly, at long decay times, the echo maximum occurs earlier than expected. All these problems in principle disappear with a complete four-step phase cycling scheme and the echo decay curve yields reliably the spin-spin relaxation time T 2 (associated with off-diagonal elements). This theory allowed the exploitation of many test experiments performed at different frequencies on hexamethylenetetramine (HMT) and sodium nitrite.  相似文献   

18.
The signal-to-noise ratio and the T2 contrast in 1H NMR microscopy are strongly affected by self-diffusion effects. Here, we investigate the free diffusion of water within imaging gradients. As a result we obtain an apparent relaxation time T2 which in NMR microscopy is at least one order of magnitude smaller than the true T2 value of water in the object. This apparent T2 relaxation is considerably reduced by improving spatial resolution. We conclude that quantitative true T2 values cannot be calculated from series of images with increasing echo time. Furthermore, from the knowledge of the apparent T2, an optimum short echo time can be found in order to maximize signal-to-noise ratio. Our theoretical findings are confirmed by phantom experiments at 11.75 T field strength.  相似文献   

19.
Experimental gliomas (F98) were inoculated in cat brain for the systematic study of their in vivo T2 relaxation time behavior. With a CPMG multi-echo imaging sequence, a train of 16 echoes was evaluated to obtain the transverse relaxation time and the magnetization M(0) at time t = 0. The magnetization decay curves were analyzed for biexponentiality. All tissues showed monoexponential T2, only that of the ventricular fluid and part of the vital tumor tissue were biexponential. Based on these NMR relaxation parameters the tissues were characterized, their correct assignment being assured by comparison with histological slices. T2 of normal grey and white matter was 74 ± 6 and 72 ± 6 msec, respectively. These two tissue types were distinguished through M(0) which for white matter was only 0.88 of the intensity of grey matter in full agreement with water content, determined from tissue specimens. At the time of maximal tumor growth and edema spread a tissue differentiation was possible in NMR relaxation parameter images. Separation of the three tissue groups of normal tissue, tumor and edema was based on T2 with T2(normal) < T2(tumor) < T2(edema). Using M(0) as a second parameter the differentiation was supported, in particular between white matter and tumor or edema. Animals were studied at 1–4 wk after tumor implantation to study tumor development. The magnetization M(0) of both tumor and peritumoral edema went through a maximum between the second and third week of tumor growth. T2 of edema was maximal at the same time with 133 ± 4 msec, while the relaxation time of tumor continued to increase during the whole growth period, reaching values of 114 ± 12 msec at the fourth week. Thus, a complete characterization of pathological tissues with NMR relaxometry must include a detailed study of the developmental changes of these tissues to assure correct experimental conditions for the goal of optimal contrast between normal and pathological regions in the NMR images.  相似文献   

20.
The diffusion of hydrogen in LaNi5+xH6 (x=?0.2, 0.0, 0.2) has been investigated by NMR from 150 to 300 K. High-temperature data of the spin-spin relaxation time T2 and the rotating frame spin lattice relaxation time T1? are independent of stoichiometry but the data of the spin lattice relaxation time T1 and low-temperature T1? data are not, and they do not fit Torrey's relaxation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号