首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In general, for higher order elliptic equations and boundary value problems like the biharmonic equation and the linear clamped plate boundary value problem, neither a maximum principle nor a comparison principle or—equivalently—a positivity preserving property is available. The problem is rather involved since the clamped boundary conditions prevent the boundary value problem from being reasonably written as a system of second order boundary value problems. It is shown that, on the other hand, for bounded smooth domains W ì \mathbbRn{\Omega \subset\mathbb{R}^n} , the negative part of the corresponding Green’s function is “small” when compared with its singular positive part, provided n\geqq 3{n\geqq 3} . Moreover, the biharmonic Green’s function in balls B ì \mathbbRn{B\subset\mathbb{R}^n} under Dirichlet (that is, clamped) boundary conditions is known explicitly and is positive. It has been known for some time that positivity is preserved under small regular perturbations of the domain, if n = 2. In the present paper, such a stability result is proved for n\geqq 3{n\geqq 3} .  相似文献   

2.
We prove the local wellposedness of three-dimensional incompressible inhomogeneous Navier–Stokes equations with initial data in the critical Besov spaces, without assumptions of small density variation. Furthermore, if the initial velocity field is small enough in the critical Besov space [(B)\dot]1/22,1(\mathbbR3){\dot B^{1/2}_{2,1}(\mathbb{R}^3)} , this system has a unique global solution.  相似文献   

3.
We discuss a novel approach to the mathematical analysis of equations with memory, based on a new notion of state. This is the initial configuration of the system at time t = 0 which can be unambiguously determined by the knowledge of the dynamics for positive times. As a model, for a nonincreasing convex function ${G : \mathbb{R}^+ \to \mathbb{R}^+}We discuss a novel approach to the mathematical analysis of equations with memory, based on a new notion of state. This is the initial configuration of the system at time t = 0 which can be unambiguously determined by the knowledge of the dynamics for positive times. As a model, for a nonincreasing convex function G : \mathbbR+ ? \mathbbR+{G : \mathbb{R}^+ \to \mathbb{R}^+} such that
$G(0) = \lim_{s\to 0}G(s) > \lim_{s\to\infty}G(s) >0 $G(0) = \lim_{s\to 0}G(s) > \lim_{s\to\infty}G(s) >0  相似文献   

4.
We investigate Kato’s method for parabolic equations with a quadratic non-linearity in an abstract form. We extract several properties known from linear systems theory which turn out to be the essential ingredients for the method. We give necessary and sufficient conditions for these conditions and provide new and more general proofs, based on real interpolation. In application to the Navier–Stokes equations, our approach unifies several results known in the literature, partly with different proofs. Moreover, we establish new existence and uniqueness results for rough initial data on arbitrary domains in \mathbbR3{\mathbb{R}}^{3} and irregular domains in \mathbbRn{\mathbb{R}}^{n}.  相似文献   

5.
Let D2 ì \mathbbR2 {D^2} \subset {\mathbb{R}^2} be a closed unit 2-disk centered at the origin O ì \mathbbR2 O \subset {\mathbb{R}^2} and let F be a smooth vector field such that O is the unique singular point of F, and all other orbits of F are simple closed curves wrapping once around O: Thus, topologically, O is a “center” singularity. Let D+ (F) {\mathcal{D}^{+} }(F) be the group of all diffeomorphisms of D 2 that preserve the orientation and orbits of F. Recently, the author described the homotopy type of D+ (F) {\mathcal{D}^{+} }(F) under the assumption that the 1-jet j 1 F(O) of F at O is nondegenerate. In this paper, the degenerate case j 1 F(O) is considered. Under additional “nondegeneracy assumptions” on F, the path components of D+ (F) {\mathcal{D}^{+} }(F) with respect to distinct weak topologies are described. These conditions imply that, for each h ? D+ (F) h \in {\mathcal{D}^{+} }(F) , its path component in D+ (F) {\mathcal{D}^{+} }(F) is uniquely determined by the 1-jet of h at O.  相似文献   

6.
We prove that, if ${u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^N}We prove that, if u : W ì \mathbbRn ? \mathbbRN{u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^N} is a solution to the Dirichlet variational problem
minwòW F(x, w, Dw) dx     subject  to     w o u0  on  ?W,\mathop {\rm min}\limits_{w}\int_{\Omega} F(x, w, Dw)\,{\rm d}x \quad {\rm subject \, to} \quad w \equiv u_0\; {\rm on}\;\partial \Omega,  相似文献   

7.
Let D2 ì \mathbbR2 {D^2} \subset {\mathbb{R}^2} be a closed unit 2-disk centered at the origin O ? \mathbbR2 O \in {\mathbb{R}^2} and let F be a smooth vector field such that O is a unique singular point of F and all other orbits of F are simple closed curves wrapping once around O. Thus, topologically O is a “center” singularity. Let q:D2\{ O } ? ( 0, + ¥ ) \theta :D2\backslash \left\{ O \right\} \to \left( {0, + \infty } \right) be the function associating with each zO its period with respect to F. In general, such a function cannot be even continuously defined at O. Let also D+ (F) {\mathcal{D}^{+} }(F) be the group of diffeomorphisms of D 2 that preserve orientation and leave invariant each orbit of F. It is proved that θ smoothly extends to all of D 2 if and only if the 1-jet of F at O is a “rotation,” i.e., j1F(O) = - y\frac??x + x\frac??y {j^1}F(O) = - y\frac{\partial }{{\partial x}} + x\frac{\partial }{{\partial y}} . Then D+ (F) {\mathcal{D}^{+} }(F) is homotopy equivalent to a circle.  相似文献   

8.
In this paper we study the existence of heteroclinic cycles in generic unfoldings of nilpotent singularities. Namely we prove that any nilpotent singularity of codimension four in \mathbbR4{\mathbb{R}^4} unfolds generically a bifurcation hypersurface of bifocal homoclinic orbits, that is, homoclinic orbits to equilibrium points with two pairs of complex eigenvalues. We also prove that any nilpotent singularity of codimension three in \mathbbR3{\mathbb{R}^3} unfolds generically a bifurcation curve of heteroclinic cycles between two saddle-focus equilibrium points with different stability indexes. Under generic assumptions these cycles imply the existence of homoclinic bifurcations. Homoclinic orbits to equilibrium points with complex eigenvalues are the simplest configurations which can explain the existence of complex dynamics as, for instance, strange attractors. The proof of the arising of these dynamics from a singularity is a very useful tool, particularly for applications.  相似文献   

9.
We prove a regularity result for the anisotropic linear elasticity equation ${P u := {\rm div} \left( \boldmath\mathsf{C} \cdot \nabla u\right) = f}We prove a regularity result for the anisotropic linear elasticity equationP u : = div ( C ·?u) = f{P u := {\rm div} \left( \boldmath\mathsf{C} \cdot \nabla u\right) = f} , with mixed (displacement and traction) boundary conditions on a curved polyhedral domain W ì \mathbbR3{\Omega \subset \mathbb{R}^3} in weighted Sobolev spaces Km+1a+1(W){\mathcal {K}^{m+1}_{a+1}(\Omega)} , for which the weight is given by the distance to the set of edges. In particular, we show that there is no loss of Kma{\mathcal {K}^{m}_{a}} -regularity. Our curved polyhedral domains are allowed to have cracks. We establish a well-posedness result when there are no neighboring traction boundary conditions and |a| < η, for some small η > 0 that depends on P, on the boundary conditions, and on the domain Ω. Our results extend to other strongly elliptic systems and higher dimensions.  相似文献   

10.
We study the regularity of the extremal solution of the semilinear biharmonic equation ${{\Delta^2} u=\frac{\lambda}{(1-u)^2}}We study the regularity of the extremal solution of the semilinear biharmonic equation D2 u=\fracl(1-u)2{{\Delta^2} u=\frac{\lambda}{(1-u)^2}}, which models a simple micro-electromechanical system (MEMS) device on a ball B ì \mathbbRN{B\subset{\mathbb{R}}^N}, under Dirichlet boundary conditions u=?n u=0{u=\partial_\nu u=0} on ?B{\partial B}. We complete here the results of Lin and Yang [14] regarding the identification of a “pull-in voltage” λ* > 0 such that a stable classical solution u λ with 0 < u λ < 1 exists for l ? (0,l*){\lambda\in (0,\lambda^*)}, while there is none of any kind when λ > λ*. Our main result asserts that the extremal solution ul*{u_{\lambda^*}} is regular (supB ul* < 1 ){({\rm sup}_B u_{\lambda^*} <1 )} provided N \leqq 8{N \leqq 8} while ul*{u_{\lambda^*}} is singular (supB ul* = 1){({\rm sup}_B u_{\lambda^*} =1)} for N \geqq 9{N \geqq 9}, in which case 1-C0|x|4/3 \leqq ul* (x) \leqq 1-|x|4/3{1-C_0|x|^{4/3} \leqq u_{\lambda^*} (x) \leqq 1-|x|^{4/3}} on the unit ball, where C0:=(\fracl*[`(l)])\frac13{C_0:=\left(\frac{\lambda^*}{\overline{\lambda}}\right)^\frac{1}{3}} and [`(l)]: = \frac89(N-\frac23)(N- \frac83){\bar{\lambda}:= \frac{8}{9}\left(N-\frac{2}{3}\right)\left(N- \frac{8}{3}\right)}.  相似文献   

11.
Fix a strictly increasing right continuous with left limits function ${W: \mathbb{R} \to \mathbb{R}}Fix a strictly increasing right continuous with left limits function W: \mathbbR ? \mathbbR{W: \mathbb{R} \to \mathbb{R}} and a smooth function F: [l,r] ? \mathbb R{\Phi : [l,r] \to \mathbb R}, defined on some interval [l, r] of \mathbb R{\mathbb R}, such that 0 < b\leqq F¢\leqq b-1{0 < b\leqq \Phi'\leqq b^{-1}}. On the diffusive time scale, the evolution of the empirical density of exclusion processes with conductances given by W is described by the unique weak solution of the non-linear differential equation ?t r = (d/dx)(d/dW) F(r){\partial_t \rho = ({\rm d}/{\rm d}x)({\rm d}/{\rm d}W) \Phi(\rho)}. We also present some properties of the operator (d/dx)(d/dW).  相似文献   

12.
In association with multi-inhomogeneity problems, a special class of eigenstrains is discovered to give rise to disturbance stresses of interesting nature. Some previously unnoticed properties of Eshelby’s tensors prove useful in this accomplishment. Consider the set of nested similar ellipsoidal domains {Ω1, Ω2,⋯,Ω N+1}, which are embedded in an infinite isotropic medium. Suppose that
in which and ξ t a p , p=1,2,3 are the principal half axes of Ω t . Suppose, the distribution of eigenstrain, ε ij *(x) over the regions Γ t t+1−Ω t , t=1,2,⋯,N can be expressed as
(‡)
where x k x l x m is of order n, and f ijklm (t) represents 3N(n+2)(n+1) different piecewise continuous functions whose arguments are ∑ p=1 3 x p 2 /a p 2. The nature of the disturbance stresses due to various classes of the piecewise nonuniform distribution of eigenstrains, obtained via superpositions of Eq. (‡) is predicted and an infinite number of impotent eigenstrains are introduced. The present theory not only provides a general framework for handling a broad range of nonuniform distribution of eigenstrains exactly, but also has great implications in employing the equivalent inclusion method (EIM) to study the behavior of composites with functionally graded reinforcements. The paper is dedicated to professor Toshio Mura.  相似文献   

13.
This paper studies the asymptotic limit for solutions to the equations of magnetohydrodynamics, specifically, the Navier–Stokes–Fourier system describing the evolution of a compressible, viscous, and heat conducting fluid coupled with the Maxwell equations governing the behavior of the magnetic field, when Mach number and Alfvén number tends to zero. The introduced system is considered on a bounded spatial domain in \mathbbR3{\mathbb{R}^{3}}, supplemented with conservative boundary conditions. Convergence towards the incompressible system of the equations of magnetohydrodynamics is shown.  相似文献   

14.
This paper is concerned with a simplified hydrodynamic equation, proposed by Ericksen and Leslie, modeling the flow of nematic liquid crystals. In dimension two, we establish both interior and boundary regularity theorems for such a flow under smallness conditions. As a consequence, we establish the existence of global (in time) weak solutions on a bounded smooth domain in \mathbbR2{\mathbb{R}^2} which are smooth everywhere with possible exceptions of finitely many singular times.  相似文献   

15.
Recently, numerical studies revealed two different scaling regimes of the peak enstrophy Z and palinstrophy P during the collision of a dipole with a no-slip wall [Clercx and van Heijst, Phys. Rev. E 65, 066305, 2002]: Z μ Re0.8{Z\propto{\rm Re}^{0.8}} and P μ Re2.25{P\propto {\rm Re}^{2.25}} for 5 × 102 ≤ Re ≤ 2 × 104 and Z μ Re0.5{Z\propto{\rm Re}^{0.5}} and P μ Re1.5{P\propto{\rm Re}^{1.5}} for Re ≥ 2 × 104 (with Re based on the velocity and size of the dipole). A critical Reynolds number Re c (here, Rec ? 2×104{{\rm Re}_c\approx 2\times 10^4}) is identified below which the interaction time of the dipole with the boundary layer depends on the kinematic viscosity ν. The oscillating plate as a boundary-layer problem can then be used to mimick the vortex-wall interaction and the following scaling relations are obtained: Z μ Re3/4, P μ Re9/4{Z\propto{\rm Re}^{3/4}, P\propto {\rm Re}^{9/4}} , and dP/dt μ Re11/4{\propto {\rm Re}^{11/4}} in agreement with the numerically obtained scaling laws. For Re ≥ Re c the interaction time of the dipole with the boundary layer becomes independent of the kinematic viscosity and, applying flat-plate boundary-layer theory, this yields: Z μ Re1/2{Z\propto{\rm Re}^{1/2}} and P μ Re3/2{P\propto {\rm Re}^{3/2}}.  相似文献   

16.
We investigate the steady flow of a shear thickening generalized Newtonian fluid under homogeneous boundary conditions on a domain in \mathbbR2{\mathbb{R}^{2}}. We assume that the stress tensor is generated by a potential of the form H = h (|e(u)|){H = h (|\varepsilon (u)|)}, e(u){\varepsilon (u)} denoting the symmetric part of the velocity gradient. We prove the existence of strong solutions for a large class of functions h having the property that h′ (t)/t increases (shear thickening case).  相似文献   

17.
The compressible Navier–Stokes–Poisson (NSP) system is considered in ${\mathbb {R}^3}The compressible Navier–Stokes–Poisson (NSP) system is considered in \mathbb R3{\mathbb {R}^3} in the present paper, and the influences of the electric field of the internal electrostatic potential force governed by the self-consistent Poisson equation on the qualitative behaviors of solutions is analyzed. It is observed that the rotating effect of electric field affects the dispersion of fluids and reduces the time decay rate of solutions. Indeed, we show that the density of the NSP system converges to its equilibrium state at the same L 2-rate (1+t)-\frac 34{(1+t)^{-\frac {3}{4}}} or L -rate (1 + t)−3/2 respectively as the compressible Navier–Stokes system, but the momentum of the NSP system decays at the L 2-rate (1+t)-\frac 14{(1+t)^{-\frac {1}{4}}} or L -rate (1 + t)−1 respectively, which is slower than the L 2-rate (1+t)-\frac 34{(1+t)^{-\frac {3}{4}}} or L -rate (1 + t)−3/2 for compressible Navier–Stokes system [Duan et al., in Math Models Methods Appl Sci 17:737–758, 2007; Liu and Wang, in Comm Math Phys 196:145–173, 1998; Matsumura and Nishida, in J Math Kyoto Univ 20:67–104, 1980] and the L -rate (1 + t)p with p ? (1, 3/2){p \in (1, 3/2)} for irrotational Euler–Poisson system [Guo, in Comm Math Phys 195:249–265, 1998]. These convergence rates are shown to be optimal for the compressible NSP system.  相似文献   

18.
We consider the existence of multi-vortex solutions to the Ginzburg–Landau equations with external potential on \mathbbR2{\mathbb{R}^2} . These equations model equilibrium states of superconductors and stationary states of the U(1) Higgs model of particle physics. In the former case, the external potential models impurities and defects. We show that if the external potential is small enough and the magnetic vortices are widely spaced, then one can pin one or an arbitrary number of vortices in the vicinity of a critical point of the potential. In addition, one can pin an arbitrary number of vortices near infinity if the potential is radially symmetric and of an algebraic order near infinity.  相似文献   

19.
We investigate the solvability of the instationary Navier–Stokes equations with fully inhomogeneous data in a bounded domain W ì \mathbbRn \Omega \subset {{\mathbb{R}}^{n}} . The class of solutions is contained in Lr(0, T; Hb, qw (W))L^{r}(0, T; H^{\beta, q}_{w} (\Omega)), where Hb, qw (W){H^{\beta, q}_{w}} (\Omega) is a Bessel-Potential space with a Muckenhoupt weight w. In this context we derive solvability for small data, where this smallness can be realized by the restriction to a short time interval. Depending on the order of this Bessel-Potential space we are dealing with strong solutions, weak solutions, or with very weak solutions.  相似文献   

20.
We study the global attractor of the non-autonomous 2D Navier–Stokes (N.–S.) system with singularly oscillating external force of the form . If the functions g 0(x, t) and g 1 (z, t) are translation bounded in the corresponding spaces, then it is known that the global attractor is bounded in the space H, however, its norm may be unbounded as since the magnitude of the external force is growing. Assuming that the function g 1 (z, t) has a divergence representation of the form where the functions (see Section 3), we prove that the global attractors of the N.–S. equations are uniformly bounded with respect to for all . We also consider the “limiting” 2D N.–S. system with external force g 0(x, t). We have found an estimate for the deviation of a solution of the original N.–S. system from a solution u 0(x, t) of the “limiting” N.–S. system with the same initial data. If the function g 1 (z, t) admits the divergence representation, the functions g 0(x, t) and g 1 (z, t) are translation compact in the corresponding spaces, and , then we prove that the global attractors converges to the global attractor of the “limiting” system as in the norm of H. In the last section, we present an estimate for the Hausdorff deviation of from of the form: in the case, when the global attractor is exponential (the Grashof number of the “limiting” 2D N.–S. system is small).   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号