首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2?CSiO2 mesoporous materials were synthesised by deposition of TiO2 nanoparticles prepared by the sol?Cgel method on to the internal pore surface of wormhole-like mesoporous silica. In this work we synthesised wormhole-like mesoporous silica of different surface area by changing the hydrothermal temperature (70, 100, or 130?°C). Subsequent to this, titania solution was deposited on to the inner surface of the pores and this was followed by calcination at different temperatures (400, 600, or 800?°C). The effect of different hydrothermal and calcination temperature on the photocatalytic properties was evaluated. The samples were characterized by N2-sorption, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. The effect of different hydrothermal and calcination temperatures on the photocatalytic properties was evaluated by measuring the degradation of methylene blue in aqueous solution under UV light irradiation (mercury lamp, 125?W). The results indicated that appropriate surface area and degree of crystallinity are two important factors for obtaining high photocatalytic efficiency. Samples prepared at a hydrothermal temperature of 100?°C and calcined at 800?°C had the best photocatalytic performance, because of the highest surface area and high crystallinity.  相似文献   

2.
Mesoporous nanocrystalline Cd-doped titania was firstly prepared at low temperature by a modified sol–gel method, using dodecylamine as a template. The template could be easily removed by refluxing samples in nitric acid ethanol solution. The Fourier transform infrared spectrometer (FT-IR), low-angle and wide-angle X-ray diffraction (XRD), N2 adsorption–desorption, transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), and UV–visible diffuse reflectance spectroscopy were used for the characterization of catalysts. The characteristic results clearly showed that Cd2+ ions were doped into the titania lattice, and the mesoporous architecture of Cd-doped TiO2 was composed of mixed-phase crystal textures of anatase and brookite. The samples displayed high visible-light photocatalytic activity for photodegradating 2,4-dichlorophenol (2,4-DCP) solution. The high activities of samples were attributed to the bicrystalline framework, large BET surface area, small crystallite size, and Cd-doping.  相似文献   

3.
使用L-半胱氨酸作为连接剂, 利用硼氢化钠原位还原预先吸附在介孔氧化亚铜表面的氯金酸根离子,得到了Au/Cu2O异质结构. 应用X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱和N2物理吸附等手段对催化剂进行表征, 并以λ>400 nm的可见光作为光源, 评价了该催化剂光催化降解亚甲基蓝(MB)的活性. 实验结果表明, 直径为4 nm的金颗粒完好地负载在介孔氧化亚铜的表面, 并且介孔氧化亚铜的细微结构与孔径均未发生变化. 研究表明, 以乙醇作为反应溶剂有效抑制了AuCl4-与Cu2O之间的氧化还原反应, 从而有利于氧化亚铜介孔结构的保持及金颗粒的原位还原. 光催化降解亚甲基蓝的结果表明, Au/Cu2O异质结构的光催化活性比纯氧化亚铜光催化活性有明显提高. 推测其光催化性能提高的主要原因如下: 一方面, 金颗粒良好的导电性有利于氧化亚铜表面电子的快速转移, 实现电子-空穴分离; 另一方面, 金颗粒可能存在的表面等离子共振现象加速了光生电子的产生.  相似文献   

4.
N, B, Si-tridoped mesoporous TiO2, together with N-doped, N, B-codoped and N, Si-codoped TiO2, was prepared by a modified sol–gel method. The samples were characterized by wide-angle X-ray diffraction (WAXRD), N2 adsorption–desorption, transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, UV–visible adsorbance spectra (UV–vis) and X-ray photoelectron spectra (XPS). The N, B, Si-tridoped mesoporous TiO2 showed small crystallite size, large specific surface area (350 m2/g), uniform pore distribution (3.2 nm) and strong absorption in the visible light region. The photocatalytic activities of the samples were evaluated by the photodegradation of 2,4-dichlorophenol (2,4-DCP) aqueous solution. The N, B, Si-tridoping sample exhibited much higher photocatalytic activity compared with other synthesized photocatalysts. The high activity could be attributed to the strong absorption in the visible light region, large specific surface area, small crystallite size, large amount of surface hydroxyl groups, and mesoporosity.  相似文献   

5.
Mesoporous TiO2 has been synthesized by the sol–gel method, using a nonionic triblock copolymer P123 as surfactant template under acidic conditions. The as-prepared samples were characterized by thermogravimetry–differential thermal analysis (TG–DTA), nitrogen absorption–desorption (BET), field emission scanning electron microscopy, and transmission electron microscopy. The photocatalytic activity of the mesoporous TiO2 was evaluated by degradation of methylene blue under high-intensity UV light irradiation; the amount of methylene blue was measured by UV–visible spectroscopy. TG–DTA analysis revealed that the surfactant had been removed partly in as-synthesized samples. BET analysis proved that all the samples retained mesoporosity with a narrow pore-size distribution (4.5–6.3 nm) and high surface area (103–200 m2/g). All calcined mesoporous TiO2 had high photocatalytic activity in the photodegradation of methylene blue.  相似文献   

6.
Nd3+ doped mesoporous TiO2 samples with different molar ratio of Nd/Ti were synthesized by a sol?Cgel method. The textural and optical properties of the samples were systematical characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption?Cdesorption isotherms, Fourier transform infrared spectroscopy and UV?CVisible absorbance spectroscopy. It was revealed that Nd3+ doping inhibited the phase transformation from anatase to rutile after calcination, and the mesoporous structure of doped samples was still retained with the increase of Nd/Ti molar ratio. The surface area of the samples varied from 137 to 210 m2g?1 and the average pore size of them ranged between 5.7 and 8.2?nm. The photocatalytic activities of all the samples were evaluated by degradation methyl orange (MO) in aqueous solution as a model reaction under UV light irradiation. The results showed that the doped samples demonstrated a higher photocatalytic activity than the mesoporous TiO2, and the 3?mol% Nd3+ doped mesoporous TiO2 exhibited the best photocatalytic performance. Meanwhile, a promotion effect of the H2O2 added was verified in the degradation of MO.  相似文献   

7.
A simple synthetic method was employed to prepare mesoporous titania with anatase crystalline walls and high photocatalytic activity. The properties and structures of mesoporous titania were characterized by means of low angle and wide angle X-ray diffraction (XRD), Fourier transform (FT)-IR spectra, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and N2 adsorption–desorption. The characteristic results clearly show that crystallization rate of the mesoporous titania affects the stability of the mesoporous structure after reflux, and that the anatase crystal in the mesoporous wall of mesoporous titania can stabilize the mesoporous structure. The photocatalytic activity of titania powder was evaluated from an analysis of the photodegradation of methyl orange under UV irradiation. The results indicate that the titania powder with mesoporous structure shows the highest photocatalytic activity.  相似文献   

8.
Ordered mesoporous TiO2 materials with an anatase frameworks have been synthesized by using a cationic surfactant cetyltrimethylammonium bromide (C16TMABr) as a structure-directing agent and soluble peroxytitanates as Ti precursor through a self-assembly between the positive charged surfactant S+ and the negatively charged inorganic framework I? (S+I? type). The low-angle X-ray diffraction (XRD) pattern of the as-prepared mesoporous TiO2 materials indicates a hexagonal mesostructure. XRD and transmission electron microscopy results and nitrogen adsorption–desorption isotherms measurements indicate that the calcined mesoporous TiO2 possesses an anatase crystalline framework having a maximum pore size of 6.9 nm and a maximum Brunauer–Emmett–Teller specific surface area of 284 m2 g?1. This ordered mesoporous anatase TiO2 also demonstrates a high photocatalytic activity for degradation of methylene blue under ultraviolet irradiation.  相似文献   

9.
Lanthanum doped mesoporous titanium dioxide photocatalysts with different La content were synthesized by template method using tetrabutyltitanate (Ti(OC4H9)4) as precursor and Pluronic P123 as template. The catalysts were characterized by thermogravimetric dif-ferential thermal analysis, N2 adsorption-desorption measurements, X-ray diffraction, and UV-Vis adsorption spectroscopy. The effect of La3+ doping concentration from 0.1% to 1% on the photocatalytic activity of mesoporous TiO2 was investigated. The characterizations indicated that the photocatalysts possessed a homogeneous pore diameter of about 10 nm with high surface area of 165 m2/g. X-ray photoelectron spectroscopy measurements in-dicated the presence of C in the doped samples in addition to La. Compared with pure mesoporous TiO2, the La-doped samples extended the photoabsorption edge into the visible light region. The results of phenol photodecomposition showed that La-doped mesoporous TiO2 exhibited higher photocatalytic activities than pure mesoporous TiO2 under UV and visible light irradiation.  相似文献   

10.
《Comptes Rendus Chimie》2014,17(6):512-520
Powdered Prussian blue analogues (PBAs) and PBAs confined in ordered mesoporous silica monoliths were used as oxide precursors through thermal treatment under an oxidizing atmosphere. The study focuses on the transformation of the alkali cation-free CoCo PBA of chemical formula K0.1CoII4[CoIII(CN)6]2.7·20 H2O. The compounds were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), IR spectroscopy and small-angle X-ray scattering (SAXS), and the magnetic properties of the calcined samples were investigated. In both cases, powdered and confined PBAs, the coordination polymers are transformed into well-crystallized Co3O4 spinel oxide. In the case of the confined PBA, isolated Co3O4 single crystals confined within the ordered mesoporosity of the monoliths were evidenced by HRTEM. A preliminary study shows an effect of particle size and confinement on the magnetic properties of the confined oxide particles.  相似文献   

11.
ZnO nanoparticles (NPs) with tunable morphologies were synthesized by a hybrid electrochemical–thermal method at different calcination temperatures without the use of any surfactant or template. The NPs were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction, dynamic light scattering, thermogravimetry–differential thermal analysis, scanning electron microscope and N2 gas adsorption–desorption studies. The FT-IR spectra of ZnO NPs showed a band at 450 cm?1, a characteristic of ZnO, which remained fairly unchanged at calcination temperatures even above 300 °C, indicating complete conversion of the precursor to ZnO. The products were thermally stable above 300 °C. The ZnO NPs were present in a hexagonal wurtzite phase and the crystallinity of ZnO increased with an increasing calcination temperature. The ZnO NPs calcined at lower temperature were mesoporous in nature. The surface areas of ZnO NPs calcined at 300 and 400 °C were 51.10 and 40.60 m2 g?1, respectively, which are significantly larger than commercial ZnO nanopowder. Surface diffusion has been found to be the key mechanism of sintering during heating from 300 to 700 °C with the activation energy of sintering as 8.33 kJ mol?1. The photocatalytic activity of ZnO NPs calcined at different temperatures evaluated by photocatalytic degradation of methylene blue under sunlight showed strong dependence on the surface area of ZnO NPs. The ZnO NPs with high surface area showed enhanced photocatalytic activity.  相似文献   

12.
Mesoporous titania has been successfully synthesized by photodegradation removal of cetyltrimethylammonium bromide as the surfactant, after slow hydrolyzation of titanium(IV) isopropoxide. Fourier transform infrared spectra proved that photodegradation has successfully decreased the peak areas of the alkyl groups from the template. The nitrogen adsorption analysis showed that the pore size and the specific surface area of the mesoporous titania were 3.7 nm and 203 m2 g−1, respectively, proving the mesoporosity of the titania obtained with the existence of the interparticle mesoporosity which was confirmed by transmission electron microscopy. Based on X-ray diffraction results, the mesoporous titania obtained was in the form of crystalline anatase phase. Furthermore, results from the diffuse reflectance ultra violet-visible spectra showed that the composition of tetrahedral titanium(IV) was more than the octahedral titanium(IV). When the mesoporous titania obtained was used as a catalyst in the oxidation of styrene, an improvement in the conversion of styrene (38%) was observed when compared to those obtained using Degussa P25 TiO2 (14%) as the catalyst.  相似文献   

13.
A sonochemical-hydrothermal method for preparing fluorinated mesoporous TiO2 microspheres was developed. Formation of mesoporous TiO2 and doping of fluorine was achieved by sonication and then hydrothermal treatment of a solution containing titanium isopropoxide, template, and sodium fluoride. The as-synthesized TiO2 microspheres were characterized by X-ray diffraction (XRD), Fourier translation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, photoluminescence spectroscopy (PL), and BET surface areas. The P123 template was removed completely during the hydrothermal and washing steps, which was different from the conventional calcination treatment. The as- synthesized TiO2 microspheres had good crystallinity and high stability. Results from the photocatalytic degradation of methylene blue (MB) showed that fluorination could remarkably improve the photocatalytic activity of titanium dioxide.  相似文献   

14.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

15.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

16.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

17.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

18.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

19.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

20.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号